Three-dimensional electro-Fenton system supplied with a nanocomposite of microbial cellulose/Fe3O4 for effective degradation of tetracycline

被引:15
|
作者
Alizadeh, Zahra [1 ]
Jonoush, Zohreh Akbari [1 ]
Rezaee, Abbas [1 ]
机构
[1] Tarbiat Modares Univ, Fac Med Sci, Dept Environm Hlth, Tehran, Iran
关键词
3D electro-Fenton; Particle electrode; Microbial cellulose; Fe3O4; Tetracycline; WASTE-WATER TREATMENT; ELECTROCHEMICAL PROCESS; ACTIVATED CARBON; PEROXONE PROCESS; BACTERIAL; NANOPARTICLES; OXIDATION; WASTEWATERS; RESISTANCE; OZONATION;
D O I
10.1016/j.chemosphere.2023.137890
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the catalytic activity of the modified microbial cellulose/Fe3O4 (MMC/Fe3O4) composite was studied for tetracycline (TC) degradation and mineralization in a three-dimensional electro-Fenton system (3DEF). The MC/Fe3O4 was modified at 400 degrees C for 60 min. The MMC/ Fe3O4 was fully analyzed (morphological, structural, chemical properties). Complete degradation and 65% mineralization of TC was achieved in the 3D-EF process (0.5 g L-1 MMC/ Fe3O4, 10 mM NaCl electrolyte, and neutral pH) within 20 min and electrical energy consumption (EEC) 0.86 kwh g(-1) TC under the 6.66 mA cm(-2). High degradation efficiency TC, in 3D-EF system was attributed to significant single oxygen (O-1(2)), superoxide (O-2(center dot-)) participation and less to Hydroxyl radical (OH center dot). Reusability of the MMC/ Fe3O4 was successfully carried out for five consecutive runs. Accordingly, green composite of MMC/ Fe3O4 can be considered as an efficient and durable particle electrode (PE) to degrade and mineralize emerging pollutants in an aquatic environment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation
    Tang, Shoufeng
    Zhao, Mengzhen
    Yuan, Deling
    Li, Xue
    Wang, Zetao
    Zhang, Xiaoyu
    Jiao, Tifeng
    Ke, Jun
    CHEMOSPHERE, 2021, 268
  • [2] Green and sustainable degradation of ofloxacin in Fe3O4/clinoptilolite electro-Fenton system under neutral condition
    Cao, Zhanping
    Li, Qingyu
    Yan, Peiwen
    Jing, Xuekuan
    Zhang, Jingli
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 161
  • [3] Fe(II)/Fe(III) cycle enhanced the Electro-Fenton degradation of methylene blue with Fe3O4@C as three-dimensional electrode
    Xu, Zhibing
    Wang, Zhipeng
    Wang, Di
    Gao, Hongcheng
    Ding, Yuqi
    Cheng, Jianping
    Han, Yi
    APPLIED SURFACE SCIENCE, 2025, 683
  • [4] GAC@Fe3O4, LDHs@Fe3O4 and GO@Fe3O4 applied for tetracycline hydrochloride removal in three-dimensional heterogeneous electro-Fenton process
    Lv, Dandan
    Wang, Yan
    Li, Hui-qiang
    DESALINATION AND WATER TREATMENT, 2021, 213 : 328 - 342
  • [5] Three-Dimensional Electro-Fenton Degradation of Methyleneblue Based on the Composite Particle Electrodes of Carbon Nanotubes and Nano-Fe3O4
    Shen, Lihua
    Yan, Pei
    Guo, Xiaobin
    Wei, Haixia
    Zheng, Xiaofeng
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (09) : 6659 - 6664
  • [6] Three-Dimensional Electro-Fenton Degradation of Methyleneblue Based on the Composite Particle Electrodes of Carbon Nanotubes and Nano-Fe3O4
    Lihua Shen
    Pei Yan
    Xiaobin Guo
    Haixia Wei
    Xiaofeng Zheng
    Arabian Journal for Science and Engineering, 2014, 39 : 6659 - 6664
  • [7] Degradation of 2,4-dinitrotoluene from aqueous solutions by three-dimensional electro-Fenton with magnetic activated carbon particle electrodes (GAC/Fe3O4)
    Vosoughi, Mehdi
    Sadeghi, Hadi
    Fazlzadeh, Mehdi
    Askari, Roya
    Dargahi, Abdollah
    Poureshgh, Yousef
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2024, 22 (08) : 939 - 956
  • [8] Hierarchical porous structure of urushiol mediated Fe3O4/three-dimensional graphene composites towards enhanced Fenton degradation of tetracycline
    Hong, Congbin
    Chen, Kaidong
    Zheng, Xuelin
    Wan, Yali
    Li, Zhongkai
    Lin, Liangxu
    CHEMICAL ENGINEERING SCIENCE, 2023, 281
  • [9] The carbon-doped Fe3O4 montmorillonite particle electrode for the degradation of antiviral drugs in electro-Fenton system
    Zhang, Ting
    Bai, Ge
    Cai, Nan
    Lei, Yongqian
    Guo, Pengran
    Xu, Jingwei
    APPLIED CLAY SCIENCE, 2023, 243
  • [10] Enhanced heterogeneous electro-Fenton degradation of salicylic acid by different Fe3O4 loaded carriers
    Zhang, Mei-yu
    Li, Qiao-han
    Li, Hui-qiang
    Yang, Ping
    DESALINATION AND WATER TREATMENT, 2024, 320