Injectivity of Lipschitz Operators

被引:6
作者
Garcia-Lirola, Luis C. [1 ]
Petitjean, Colin [2 ]
Prochazka, Antonin [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
[2] Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR8050, F-77447 Marne La Vallee, France
[3] Univ Franche Comte, Univ Bourgogne Franche Comte, CNRS UMR 6623, Lab Math Besancon, 16 Route Gray, F-25030 Besancon, France
关键词
Lipschitz-free space; Lipschitz function; Support; Injectivity; METRIC-SPACES;
D O I
10.1007/s40840-023-01467-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any Lipschitz map f:M -> N between metric spaces can be "linearised " in such a way that it becomes a bounded linear operator f circumflex expressionccent :F(M)-> F(N) between the Lipschitz-free spaces over M and N. The purpose of this note is to explore the connections between the injectivity of f and the injectivity of f circumflex expressionccent . While it is obvious that if f circumflex expressionccent is injective then so is f, the converse is less clear. Indeed, we pin down some cases where this implication does not hold but we also prove that, for some classes of metric spaces M, any injective Lipschitz map f:M -> N (for any N) admits an injective linearisation. Along our way, we study how Lipschitz maps carry the support of elements in free spaces and also we provide stronger conditions on f which ensure that f circumflex expressionccent is injective.
引用
收藏
页数:31
相关论文
共 35 条
[21]   TREE METRICS AND THEIR LIPSCHITZ-FREE SPACES [J].
Godard, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) :4311-4320
[22]   Lipschitz-free Banach spaces [J].
Godefroy, G ;
Kalton, NJ .
STUDIA MATHEMATICA, 2003, 159 (01) :121-141
[23]   FREE BANACH SPACES AND THE APPROXIMATION PROPERTIES [J].
Godefroy, Gilles ;
Ozawa, Narutaka .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) :1681-1687
[24]  
Gonzalez M, 2010, OPER THEORY ADV APPL, V194, P1, DOI 10.1007/978-3-7643-8998-7
[25]   Quasicircles and bounded turning circles modulo bi-Lipschitz maps [J].
Herron, David A. ;
Meyer, Daniel .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (03) :603-630
[26]  
Hurewicz W, 1941, PRINCETON MATH SERIE
[27]   Compact composition operators on noncompact Lipschitz spaces [J].
Jimenez-Vargas, A. ;
Villegas-Vallecillos, Moises .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (01) :221-229
[28]   Injective Tauberian Operators on L1 and Operators with Dense Range on l∞ [J].
Johnson, William ;
Nasseri, Amir Bahman ;
Schechtman, Gideon ;
Tkocz, Tomasz .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02) :276-280
[29]   TAUBERIAN OPERATORS ON BANACH-SPACES [J].
KALTON, N ;
WILANSKY, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 57 (02) :251-255
[30]  
Kalton N.J., 2004, Collect. Math., V55, P171