Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression

被引:37
作者
Gao, Jingjing [1 ]
Wang, Jun [2 ]
Xu, Zili [1 ]
Wang, Cunjun [1 ]
Yan, Song [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Sci & Technol Liquid Rocket Engine Lab, Xian 710100, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiaxial loading; Fatigue life prediction; Back propagation neural network; Gaussian process regression; Uncertainty quantification; CRITICAL PLANE; PROBABILISTIC MODEL; LIFE PREDICTION; CRITERION; STEEL;
D O I
10.1016/j.ijfatigue.2022.107361
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Engineering structures are often suffering multiaxial stress which leads to multiaxial fatigue failures. Accurate and reliable multiaxial life prediction is a challenging issue in fatigue analysis due to the intricate deterioration mechanisms of the fatigue failure and the large uncertainty in the material parameters at the microscopic scale. Moreover, conventional multiaxial fatigue life prediction models are empirical or semi-empirical. To tackle this problem, a data-driven method is presented, which combines the back propagation neural network (BPNN) and the Gaussian process regression (GPR). The BPNN-GPR method can predict the multiaxial fatigue life and quantify the uncertainty simultaneously. This method is validated using six materials including the uniaxial, multiaxial proportional and multiaxial nonproportional loading cases. All the predicted lives fall within a life factor of +/- 3, which indicates that the BPNN-GPR method has the satisfactory capability for multiaxial fatigue life prediction. In addition, results also show the prediction capability of the BPNN-GPR method for unknown multiaxial nonproportional loading paths.
引用
收藏
页数:13
相关论文
共 53 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Machine learning-based methods in structural reliability analysis: A review [J].
Afshari, Sajad Saraygord ;
Enayatollahi, Fatemeh ;
Xu, Xiangyang ;
Liang, Xihui .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
[3]   Fatigue and cyclic plasticity of 304L stainless steel under axial-torsional loading at room temperature [J].
Bemfica, C. ;
Carneiro, L. ;
Mamiya, E. N. ;
Castro, F. C. .
INTERNATIONAL JOURNAL OF FATIGUE, 2019, 125 :349-361
[4]   A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics [J].
Bock, Frederic E. ;
Aydin, Roland C. ;
Cyron, Christian J. ;
Huber, Norbert ;
Kalidindi, Surya R. ;
Klusemann, Benjamin .
FRONTIERS IN MATERIALS, 2019, 6
[5]   Multiaxial high-cycle fatigue criterion for hard metals [J].
Carpinteri, A ;
Spagnoli, A .
INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (02) :135-145
[6]   Fatigue modeling using neural networks: A comprehensive review [J].
Chen, Jie ;
Liu, Yongming .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (04) :945-979
[7]   Probabilistic physics-guided machine learning for fatigue data analysis [J].
Chen, Jie ;
Liu, Yongming .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
[8]  
Chengcheng Z, 2010, HIGH CYCLE FATIGUE L
[9]   Generalized probabilistic model allowing for various fatigue damage variables [J].
Correia, Jose ;
Apetre, Nicole ;
Arcari, Attilio ;
De Jesus, Abilio ;
Muniz-Calvente, Miguel ;
Calcada, Rui ;
Berto, Filippo ;
Fernandez-Canteli, Alfonso .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 :187-194
[10]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274