Analyticity of parametric elliptic eigenvalue problems and applications to quasi-Monte Carlo methods

被引:1
|
作者
Van Kien Nguyen [1 ]
机构
[1] Univ Transport & Commun, Dept Math Anal, Hanoi, Vietnam
关键词
Elliptic partial differential equations; eigenvalue problems; analyticity quasi-Monte Carlo methods; SPARSE POLYNOMIAL-APPROXIMATION; PETROV-GALERKIN DISCRETIZATION; POSITIVE SOLUTIONS; PRODUCT WEIGHTS; CRITICAL GROWTH; EQUATIONS; INTEGRATION; PDES; EXISTENCE; CONVERGENCE;
D O I
10.1080/17476933.2023.2205136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study the analyticity of the leftmost eigenvalue of the linear elliptic partial differential operators with random coefficient and analyse the convergence rate of the quasi-Monte Carlo method for approximation of the expectation of this quantity. The random coefficient is assumed to be represented by an affine expansion a(0)(x) + Sigma(j is an element of N) y(j)a(j)(x), where elements of the parameter vector y = (y(j))(j is an element of N) is an element of U-infinity are independent and identically uniformly distributed on U := [- 1/2, 1/2]. Under the assumption ||Sigma(j is an element of N.) rho(j)|a(j)| ||L-infinity(D) < infinity with some positive sequence (rho(j))(j is an element of N) is an element of l(p)(N) for p is an element of (0, 1] we show that for any y is an element of U-infinity, the elliptic partial differential operator has a countably infinite number of eigenvalues (lambda(j)(y)) (j is an element of N) which can be ordered non-decreasingly. Moreover, the spectral gap lambda(2)(y) - lambda(1)(y) is uniformly positive in U-infinity. From this, we prove the holomorphic extension property of lambda(1)(y) to a complex domain in C-infinity and estimate partial derivatives of lambda(1)(y) with respect to the parameter y by using Cauchy's formula for analytic functions. Based on these bounds we prove the dimension-independent convergence rate of the quasi-Monte Carlo method to approximate the expectation of lambda(1)(y).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    Numerische Mathematik, 2019, 142 : 863 - 915
  • [2] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [3] Quasi-Monte Carlo methods for elliptic BVPs
    Mascagni, M
    Karaivanova, A
    Hwang, CO
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 345 - 355
  • [4] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [5] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Longo, Marcello
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [6] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Marcello Longo
    Journal of Scientific Computing, 2022, 92
  • [7] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [8] Quasi-Monte Carlo methods with applications in finance
    L'Ecuyer, Pierre
    FINANCE AND STOCHASTICS, 2009, 13 (03) : 307 - 349
  • [9] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 466 - 503
  • [10] Quasi-Monte Carlo methods with applications in finance
    Pierre L’Ecuyer
    Finance and Stochastics, 2009, 13 : 307 - 349