A STUDY OF DIFFERENTIAL IDENTITIES ON σ-PRIME RINGS

被引:0
作者
Abbasi, Adnan [1 ]
Madni, Md. Arshad [2 ]
Mozumder, Muzibur Rahman [2 ]
机构
[1] Madanapalle Inst Technol & Sci, Dept Math, Madanapalle 517325, AP, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 03期
关键词
sigma-prime ring; derivation; involution; IDEALS;
D O I
10.4134/CKMS.c220240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a sigma-prime ring with involution sigma. The main objective of this paper is to describe the structure of the sigma-prime ring R with involution sigma satisfying certain differential identities involving three derivations psi(1), psi(2) and psi(3) such that psi(1)[t(1), sigma(t(1))] + [psi(2)(t(1)), psi(2)(sigma(t(1)))] + [psi(3)(t(1)), sigma(t(1))] is an element of J(Z) for all t(1) is an element of R. Further, some other related results have also been discussed.
引用
收藏
页码:679 / 693
页数:15
相关论文
共 14 条
[1]   Additive maps on prime and semiprime rings with involution [J].
Alahmadi, A. ;
Alhazmi, H. ;
Ali, S. ;
Dar, N. A. ;
Khan, A. N. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03) :1126-1133
[2]   On *-differential identities in prime rings with involution [J].
Ali, Shakir ;
Koam, Ali N. A. ;
Ansari, Moin A. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02) :708-715
[3]   On *-centralizing mappings in rings with involution [J].
Ali, Shakir ;
Dar, Nadeem Ahmed .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (01) :25-28
[4]   Posner's First Theorem for *-ideals in Prime Rings with Involution [J].
Ashraf, Mohammad ;
Siddeeque, Mohammad Aslam .
KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (02) :343-347
[5]  
Daif M. N., 1998, INT J MATH MATH SCI, V21, P471, DOI DOI 10.1155/S0161171298000660
[6]   DERIVATIONS IN PRIME-RINGS [J].
FELZENSZWALB, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 84 (01) :16-20
[7]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[8]   DIFFERENTIAL IDENTITIES, LIE IDEALS, AND POSNER THEOREMS [J].
LANSKI, C .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 134 (02) :275-297
[9]  
Lee PH., 1981, Chin. J. Math, V9, P107
[10]   CENTRALIZING MAPPINGS OF PRIME-RINGS [J].
MAYNE, JH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (01) :122-126