On the Importance of Attention and Augmentations for Hypothesis Transfer in Domain Adaptation and Generalization

被引:3
|
作者
Thomas, Georgi [1 ]
Sahay, Rajat [1 ]
Jahan, Chowdhury Sadman [1 ]
Manjrekar, Mihir [1 ]
Popp, Dan [1 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
关键词
domain adaptation; domain generalization; vision transformers; convolutional neural networks;
D O I
10.3390/s23208409
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Unsupervised domain adaptation (UDA) aims to mitigate the performance drop due to the distribution shift between the training and testing datasets. UDA methods have achieved performance gains for models trained on a source domain with labeled data to a target domain with only unlabeled data. The standard feature extraction method in domain adaptation has been convolutional neural networks (CNNs). Recently, attention-based transformer models have emerged as effective alternatives for computer vision tasks. In this paper, we benchmark three attention-based architectures, specifically vision transformer (ViT), shifted window transformer (SWIN), and dual attention vision transformer (DAViT), against convolutional architectures ResNet, HRNet and attention-based ConvNext, to assess the performance of different backbones for domain generalization and adaptation. We incorporate these backbone architectures as feature extractors in the source hypothesis transfer (SHOT) framework for UDA. SHOT leverages the knowledge learned in the source domain to align the image features of unlabeled target data in the absence of source domain data, using self-supervised deep feature clustering and self-training. We analyze the generalization and adaptation performance of these models on standard UDA datasets and aerial UDA datasets. In addition, we modernize the training procedure commonly seen in UDA tasks by adding image augmentation techniques to help models generate richer features. Our results show that ConvNext and SWIN offer the best performance, indicating that the attention mechanism is very beneficial for domain generalization and adaptation with both transformer and convolutional architectures. Our ablation study shows that our modernized training recipe, within the SHOT framework, significantly boosts performance on aerial datasets.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
    Xiao, Liang
    Xu, Jiaolong
    Zhao, Dawei
    Shang, Erke
    Zhu, Qi
    Dai, Bin
    SENSORS, 2023, 23 (11)
  • [42] Correlation-aware adversarial domain adaptation and generalization
    Rahman, Mohammad Mahfujur
    Fookes, Clinton
    Baktashmotlagh, Mahsa
    Sridharan, Sridha
    PATTERN RECOGNITION, 2020, 100
  • [43] Multi-Domain Transfer Component Analysis for Domain Generalization
    Grubinger, Thomas
    Birlutiu, Adriana
    Schoener, Holger
    Natschlaeger, Thomas
    Heskes, Tom
    NEURAL PROCESSING LETTERS, 2017, 46 (03) : 845 - 855
  • [44] Multi-Domain Transfer Component Analysis for Domain Generalization
    Thomas Grubinger
    Adriana Birlutiu
    Holger Schöner
    Thomas Natschläger
    Tom Heskes
    Neural Processing Letters, 2017, 46 : 845 - 855
  • [45] Empirical Generalization Study: Unsupervised Domain Adaptation vs. Domain Generalization Methods for Semantic Segmentation in the Wild
    Piva, Fabrizio J.
    de Geus, Daan
    Dubbelman, Gijs
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 499 - 508
  • [46] Domain Generalization Based on Transfer Component Analysis
    Grubinger, Thomas
    Birlutiu, Adriana
    Schoener, Holger
    Natschlaeger, Thomas
    Heskes, Tom
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015), 2015, 9094 : 325 - 334
  • [47] Attention Regularized Laplace Graph for Domain Adaptation
    Luo, Lingkun
    Chen, Liming
    Hu, Shiqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7322 - 7337
  • [48] Transferable attention networks for adversarial domain adaptation
    Zhang, Changchun
    Zhao, Qingjie
    Wang, Yu
    INFORMATION SCIENCES, 2020, 539 : 422 - 433
  • [49] Domain Adaptation Transfer Learning by Kernel Representation Adaptation
    Chen, Xiaoyi
    Lengelle, Regis
    PATTERN RECOGNITION APPLICATIONS AND METHODS, 2018, 10857 : 45 - 61
  • [50] Adversarial Poisoning of Importance Weighting in Domain Adaptation
    Umer, Muhammad
    Frederickson, Christopher
    Polikar, Robi
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 381 - 388