MTS-GAT: multivariate time series anomaly detection based on graph attention networks

被引:4
作者
Chen, Ling [1 ]
Mao, Yingchi [2 ]
Zhou, Hongliang [1 ]
Zhang, Benteng [1 ]
Wang, Zicheng [3 ]
Wu, Jie [4 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab Water Big Data Technol, Minist Water Resources, Nanjing 211100, Jiangsu, Peoples R China
[3] PowerChina Kunming Engn Corp Ltd, Kunming 650051, Yunnan, Peoples R China
[4] Temple Univ, Ctr Networked Comp, Philadelphia, PA 19122 USA
关键词
multivariate time series; anomaly detection; graph neural networks; attention mechanism;
D O I
10.1504/IJSNET.2023.133812
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection using multivariate time series data from sensors can determine whether the equipment is operating normally. However, anomaly detection suffers from inadequate utilisation of spatio-temporal dependencies and unclear explanations of anomaly causes. To improve the accuracy of anomaly detection and rationalise the causes of anomalies, we propose multivariate time series anomaly detection based on graph attention networks (MTS-GAT). MTS-GAT constructs variable and temporal graphs using embedding vector similarity. The nonlinear dependencies of the variable and temporal dimensions are learned through two parallel graph attention layers. Finally, MTS-GAT jointly optimises the prediction-based and reconstruction-based models. Anomalous variables are localised with the anomaly scores computed after the joint optimisation to enhance the interpretability of anomaly detection. Experimental evaluations prove that MTS-GAT outperforms the best baseline approach, GDN. The F1 scores are improved by 2.73%, 3.39%, and 0.9% on SWaT, WADI, and SMD datasets.
引用
收藏
页码:38 / 49
页数:16
相关论文
共 23 条
[1]  
Ahmed C.M., 2017, P 3 INT WORKSH CYB S, P25
[2]   Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets [J].
Belkina, Anna C. ;
Ciccolella, Christopher O. ;
Anno, Rina ;
Halpert, Richard ;
Spidlen, Josef ;
Snyder-Cappione, Jennifer E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   DAEMON: Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series [J].
Chen, Xuanhao ;
Deng, Liwei ;
Huang, Feiteng ;
Zhang, Chengwei ;
Zhang, Zongquan ;
Zhao, Yan ;
Zheng, Kai .
2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, :2225-2230
[4]   A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder [J].
Park, Daehyung ;
Hoshi, Yuuna ;
Kemp, Charles C. .
IEEE Robotics and Automation Letters, 2018, 3 (03) :1544-1551
[5]   Functional peaks-over-threshold analysis [J].
de Fondeville, Raphael ;
Davison, Anthony C. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) :1392-1422
[6]  
Deng AL, 2021, AAAI CONF ARTIF INTE, V35, P4027
[7]   Early Fault Detection in the Main Bearing of Wind Turbines Based on Gated Recurrent Unit (GRU) Neural Networks and SCADA Data [J].
Encalada-Davila, Angel ;
Moyon, Luis ;
Tutiven, Christian ;
Puruncajas, Bryan ;
Vidal, Yolanda .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) :5583-5593
[8]   Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection [J].
Gong, Dong ;
Liu, Lingqiao ;
Le, Vuong ;
Saha, Budhaditya ;
Mansour, Moussa Reda ;
Venkatesh, Svetha ;
van den Hengel, Anton .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1705-1714
[9]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[10]   Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding [J].
Hundman, Kyle ;
Constantinou, Valentino ;
Laporte, Christopher ;
Colwell, Ian ;
Soderstrom, Tom .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :387-395