EXISTENCE RESULTS FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH INFINITE DELAY AND IMPULSIVE EFFECTS

被引:0
作者
Kavitha, V. [1 ]
Kanimozhi, P. [1 ]
Arjunan, M. M. [2 ]
机构
[1] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] SASTRA, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷
关键词
Fixed point theorem; mild solution; atangana-Baleanu fractional-order derivative; impulsive condition; FUNCTIONAL-DIFFERENTIAL EQUATIONS; CONTROLLABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of an Atangana-Baleanu fractional impulsive functional differential system [ABFIFDS] with infinite delay and impulsive effects are investigated in this paper. Utilizing a solution operator and traditional fixed-point theorems like Banach contraction principle, the existence and uniqueness results are achieved. Finally, an example is presented to illustrate the theoretical findings.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 23 条
[1]   Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay [J].
Aimene, D. ;
Baleanu, D. ;
Seba, D. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :51-57
[2]   Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators [J].
Arjunan, M. Mallika ;
Hamiaz, A. ;
Kavitha, V .
CHAOS SOLITONS & FRACTALS, 2021, 149
[3]   On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses [J].
Arjunan, M. Mallika ;
Abdeljawad, Thabet ;
Kavitha, V. ;
Yousef, Ali .
CHAOS SOLITONS & FRACTALS, 2021, 148
[4]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[5]   Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel [J].
Bahaa, G. M. ;
Hamiaz, Adnane .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[6]  
Bainov D. D., 1995, Ser. Adv. Math. Appl. Sci., V28
[7]   Fractional calculus in the sky [J].
Baleanu, Dumitru ;
Agarwal, Ravi P. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[8]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[9]   EXISTENCE OF MILD SOLUTION OF A CLASS OF NONLOCAL FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH NOT INSTANTANEOUS IMPULSES [J].
Borah, Jayanta ;
Bora, Swaroop Nandan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :495-508
[10]   Existence results for impulsive neutral functional differential equations with infinite delay [J].
Chang, Y. -K. ;
Anguraj, A. ;
Arjunan, M. Mallika .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (01) :209-218