Machine learning for photonics: from computing to communication

被引:0
作者
Da Ros, Francesco [1 ]
Cem, Ali [1 ]
Osadchuk, Yevhenii [1 ]
Jovanovic, Ognjen [1 ]
Zibar, Darko [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
来源
2023 IEEE PHOTONICS SOCIETY SUMMER TOPICALS MEETING SERIES, SUM | 2023年
关键词
NN models; matrix multipliers; equalization;
D O I
10.1109/SUM57928.2023.10224400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks are effective tools for learning direct and inverse models. Here, we review two specific applications of neural networks to photonics: (i) learning accurate direct models for optical matrix multipliers and (ii) inverse modeling for short-reach fiber communication systems, enabling signal equalization.
引用
收藏
页数:2
相关论文
共 26 条
[1]  
[Anonymous], P ECOC 2016
[2]  
Cem A, 2022, 2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC)
[3]  
Cem A., 2023, PROC CLEO
[4]  
Cem A., PROC IPC 2022
[5]  
Cem A, 2023, Arxiv, DOI arXiv:2210.09171
[6]  
Chagnon M, 2018, 2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC)
[7]   Machine-learning-based equalization for short-reach transmission: neural networks and reservoir computing [J].
Da Ros, F. ;
Ranzini, S. M. ;
Dischler, R. ;
Cem, A. ;
Aref, V ;
Buelow, H. ;
Zibar, D. .
METRO AND DATA CENTER OPTICAL NETWORKS AND SHORT-REACH LINKS IV, 2021, 11712
[8]   Reservoir-Computing Based Equalization With Optical Pre-Processing for Short-Reach Optical Transmission [J].
Da Ros, Francesco ;
Ranzini, Stenio M. ;
Buelow, Henning ;
Zibar, Darko .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)
[9]   Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators [J].
De Marinis, Lorenzo ;
Cococcioni, Marco ;
Liboiron-Ladouceur, Odile ;
Contestabile, Giampiero ;
Castoldi, Piero ;
Andriolli, Nicola .
APPLIED SCIENCES-BASEL, 2021, 11 (13)
[10]   Fiber-Agnostic Machine Learning-Based Raman Amplifier Models [J].
de Moura, Uiara C. ;
Zibar, Darko ;
Brusin, A. Margareth Rosa ;
Carena, Andrea ;
Da Ros, Francesco .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (01) :83-95