Promoting Photosynthetic Production of Dammarenediol-II in Chlamydomonas reinhardtii via Gene Loading and Culture Optimization

被引:0
作者
Zhao, Mei-Li [1 ,2 ]
Li, Xiang-Yu [1 ,3 ]
Lan, Cheng-Xiang [1 ]
Yuan, Zi-Ling [1 ]
Zhao, Jia-Lin [1 ]
Huang, Ying [1 ]
Hu, Zhang-Li [1 ]
Jia, Bin [1 ]
机构
[1] Shenzhen Univ, Longhua Innovat Inst Biotechnol,Shenzhen Engn Lab, Coll Life Sci & Oceanog,Guangdong Prov Key Lab Pla, Guangdong Technol Res Ctr Marine Algal Bioengn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Zhejiang A&F Univ, Bamboo Ind Inst, Linan 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
ginsenosides; microalgae; Chlamydomonas reinhardtii; dammarenediol-II; metabolic engineering; PHOTOTROPHIC PRODUCTION; BIOSYNTHESIS; GINSENOSIDES; VERSATILE;
D O I
10.3390/ijms241311002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ginsenosides are major bioactive compounds found in Panax ginseng that exhibit various pharmaceutical properties. Dammarenediol-II, the nucleus of dammarane-type ginsenosides, is a promising candidate for pharmacologically active triterpenes. Dammarenediol-II synthase (DDS) cyclizes 2,3-oxidosqualene to produce dammarenediol-II. Based on the native terpenoids synthetic pathway, a dammarane-type ginsenosides synthetic pathway was established in Chlamydomonas reinhardtii by introducing P. ginseng PgDDS, CYP450 enzyme (PgCYP716A47), or/and Arabidopsis thaliana NADPH-cytochrome P450 reductase gene (AtCPR), which is responsible for producing dammarane-type ginsenosides. To enhance productivity, strategies such as "gene loading" and "culture optimizing" were employed. Multiple copies of transgene expression cassettes were introduced into the genome to increase the expression of the key rate-limiting enzyme gene, PgDDS, significantly improving the titer of dammarenediol-II to approximately 0.2 mg/L. Following the culture optimization in an opt2 medium supplemented with 1.5 mM methyl jasmonate under a light:dark regimen, the titer of dammarenediol-II increased more than 13-fold to approximately 2.6 mg/L. The C. reinhardtii strains engineered in this study constitute a good platform for the further production of ginsenosides in microalgae.
引用
收藏
页数:16
相关论文
共 41 条
  • [1] Can too many copies spoil the broth?
    Aw, Rochelle
    Polizzi, Karen M.
    [J]. MICROBIAL CELL FACTORIES, 2013, 12
  • [2] Phytochemistry of ginsenosides: Recent advancements and emerging roles
    Chopra, Priyanka
    Chhillar, Himanshu
    Kim, Yu-Jin
    Jo, Ick Hyun
    Kim, Sun Tae
    Gupta, Ravi
    [J]. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2023, 63 (05) : 613 - 640
  • [3] Methyl Jasmonate and Methyl-β-Cyclodextrin Individually Boost Triterpenoid Biosynthesis in Chlamydomonas Reinhardtii UVM4
    Commault, Audrey S.
    Kuzhiumparambil, Unnikrishnan
    Herdean, Andrei
    Fabris, Michele
    Jaramillo-Madrid, Ana Cristina
    Abbriano, Raffaela M.
    Ralph, Peter J.
    Pernice, Mathieu
    [J]. PHARMACEUTICALS, 2021, 14 (02) : 1 - 12
  • [4] Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii
    Commault, Audrey S.
    Fabris, Michele
    Kuzhiumparambil, Unnikrishnan
    Adriaans, Jack
    Pernice, Mathieu
    Ralph, Peter J.
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2019, 39
  • [5] Cox-Georgian D, 2019, MEDICINAL PLANTS: FROM FARM TO PHARMACY, P333, DOI 10.1007/978-3-030-31269-5_15
  • [6] Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii
    Crozet, Pierre
    Navarro, Francisco J.
    Willmund, Felix
    Mehrshahi, Payam
    Bakowski, Kamil
    Lauersen, Kyle J.
    Perez-Perez, Maria-Esther
    Auroy, Pascaline
    Rovira, Aleix Gorchs
    Sauret-Gueto, Susana
    Niemeyer, Justus
    Spaniol, Benjamin
    Theis, Jasmine
    Troesch, Raphael
    Westrich, Lisa-Desiree
    Vavitsas, Konstantinos
    Baier, Thomas
    Huebner, Wolfgang
    de Carpentier, Felix
    Cassarini, Mathieu
    Danon, Antoine
    Henri, Julien
    Marchand, Christophe H.
    de Mia, Marcello
    Sarkissian, Kevin
    Baulcombe, David C.
    Peltier, Gilles
    Crespo, Jose-Luis
    Kruse, Olaf
    Jensen, Poul-Erik
    Schroda, Michael
    Smith, Alison G.
    Lemaire, Stephane D.
    [J]. ACS SYNTHETIC BIOLOGY, 2018, 7 (09): : 2074 - 2086
  • [7] Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    Dai, Zhubo
    Liu, Yi
    Zhang, Xianan
    Shi, Mingyu
    Wang, Beibei
    Wang, Dong
    Huang, Luqi
    Zhang, Xueli
    [J]. METABOLIC ENGINEERING, 2013, 20 : 146 - 156
  • [8] Genetic engineering of microalgae for enhanced biorefinery capabilities
    Fayyaz, Mehmooda
    Chew, Kit Wayne
    Show, Pau Loke
    Ling, Tau Chuan
    Ng, I-Son
    Chang, Jo-Shu
    [J]. BIOTECHNOLOGY ADVANCES, 2020, 43
  • [9] A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii
    Fuhrmann, M
    Oertel, W
    Hegemann, P
    [J]. PLANT JOURNAL, 1999, 19 (03) : 353 - 361
  • [10] Biotechnological Interventions for Ginsenosides Production
    Gantait, Saikat
    Mitra, Monisha
    Chen, Jen-Tsung
    [J]. BIOMOLECULES, 2020, 10 (04)