Assuring Safe and Efficient Operation of UAV Using Explainable Machine Learning

被引:6
|
作者
Alharbi, Abdulrahman [1 ]
Petrunin, Ivan [1 ]
Panagiotakopoulos, Dimitrios [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford MK43 0AL, England
关键词
demand-capacity management; explainable artificial intelligence; low-altitude airspace operations; machine learning; traffic-flow management; ARTIFICIAL-INTELLIGENCE; CLASSIFICATIONS; CERTIFICATION; CHALLENGES; MODELS; AI;
D O I
10.3390/drones7050327
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The accurate estimation of airspace capacity in unmanned traffic management (UTM) operations is critical for a safe, efficient, and equitable allocation of airspace system resources. While conventional approaches for assessing airspace complexity certainly exist, these methods fail to capture true airspace capacity, since they fail to address several important variables (such as weather). Meanwhile, existing AI-based decision-support systems evince opacity and inexplicability, and this restricts their practical application. With these challenges in mind, the authors propose a tailored solution to the needs of demand and capacity management (DCM) services. This solution, by deploying a synthesized fuzzy rule-based model and deep learning will address the trade-off between explicability and performance. In doing so, it will generate an intelligent system that will be explicable and reasonably comprehensible. The results show that this advisory system will be able to indicate the most appropriate regions for unmanned aerial vehicle (UAVs) operation, and it will also increase UTM airspace availability by more than 23%. Moreover, the proposed system demonstrates a maximum capacity gain of 65% and a minimum safety gain of 35%, while possessing an explainability attribute of 70%. This will assist UTM authorities through more effective airspace capacity estimation and the formulation of new operational regulations and performance requirements.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] The role of explainable AI in enhancing breast cancer diagnosis using machine learning and deep learning models
    Zulfikar Ali Ansari
    Manish Madhava Tripathi
    Rafeeq Ahmed
    Discover Artificial Intelligence, 5 (1):
  • [22] An Exploration of Explainable Machine Learning Using Semantic Web Technology
    Procko, Tyler
    Elvira, Timothy
    Ochoa, Omar
    Del Rio, Nicholas
    16TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2022), 2022, : 143 - 146
  • [23] Predicting life satisfaction using machine learning and explainable AI
    Khan, Alif Elham
    Hasan, Mohammad Junayed
    Anjum, Humayra
    Mohammed, Nabeel
    Momen, Sifat
    HELIYON, 2024, 10 (10)
  • [24] Explainable Software Defects Classification Using SMOTE and Machine Learning
    Jude A.
    Uddin J.
    Annals of Emerging Technologies in Computing, 2024, 8 (01) : 35 - 49
  • [25] Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI
    Jeon, Insu
    Kim, Minjoong
    So, Dayeong
    Kim, Eun Young
    Nam, Yunyoung
    Kim, Seungsoo
    Shim, Sehoon
    Kim, Joungmin
    Moon, Jihoon
    DIAGNOSTICS, 2024, 14 (22)
  • [26] Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence
    Oei, Chien Wei
    Chan, Yam Meng
    Zhang, Xiaojin
    Leo, Kee Hao
    Yong, Enming
    Chong, Rhan Chaen
    Hong, Qiantai
    Zhang, Li
    Pan, Ying
    Tan, Glenn Wei Leong
    Mak, Malcolm Han Wen
    JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2024,
  • [27] Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning
    Park, Sang Won
    Park, Ye-Lin
    Lee, Eun-Gyeong
    Chae, Heejung
    Park, Phillip
    Choi, Dong-Woo
    Choi, Yeon Ho
    Hwang, Juyeon
    Ahn, Seohyun
    Kim, Keunkyun
    Kim, Woo Jin
    Kong, Sun-Young
    Jung, So-Youn
    Kim, Hyun-Jin
    CANCERS, 2024, 16 (22)
  • [28] Forecasting patient flows with pandemic induced concept drift using explainable machine learning
    Susnjak, Teo
    Maddigan, Paula
    EPJ DATA SCIENCE, 2023, 12 (01)
  • [29] Empowering Glioma Prognosis With Transparent Machine Learning and Interpretative Insights Using Explainable AI
    Palkar, Anisha
    Dias, Cifha Crecil
    Chadaga, Krishnaraj
    Sampathila, Niranjana
    IEEE ACCESS, 2024, 12 : 31697 - 31718
  • [30] Predicting kidney allograft survival with explainable machine learning
    Fabreti-Oliveira, Raquel A.
    Nascimento, Evaldo
    de Melo Santosa, Luiz Henrique
    de Oliveira Santos, Marina Ribeiro
    Veloso, Adriano Alonso
    TRANSPLANT IMMUNOLOGY, 2024, 85