Assuring Safe and Efficient Operation of UAV Using Explainable Machine Learning

被引:6
|
作者
Alharbi, Abdulrahman [1 ]
Petrunin, Ivan [1 ]
Panagiotakopoulos, Dimitrios [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford MK43 0AL, England
关键词
demand-capacity management; explainable artificial intelligence; low-altitude airspace operations; machine learning; traffic-flow management; ARTIFICIAL-INTELLIGENCE; CLASSIFICATIONS; CERTIFICATION; CHALLENGES; MODELS; AI;
D O I
10.3390/drones7050327
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The accurate estimation of airspace capacity in unmanned traffic management (UTM) operations is critical for a safe, efficient, and equitable allocation of airspace system resources. While conventional approaches for assessing airspace complexity certainly exist, these methods fail to capture true airspace capacity, since they fail to address several important variables (such as weather). Meanwhile, existing AI-based decision-support systems evince opacity and inexplicability, and this restricts their practical application. With these challenges in mind, the authors propose a tailored solution to the needs of demand and capacity management (DCM) services. This solution, by deploying a synthesized fuzzy rule-based model and deep learning will address the trade-off between explicability and performance. In doing so, it will generate an intelligent system that will be explicable and reasonably comprehensible. The results show that this advisory system will be able to indicate the most appropriate regions for unmanned aerial vehicle (UAVs) operation, and it will also increase UTM airspace availability by more than 23%. Moreover, the proposed system demonstrates a maximum capacity gain of 65% and a minimum safety gain of 35%, while possessing an explainability attribute of 70%. This will assist UTM authorities through more effective airspace capacity estimation and the formulation of new operational regulations and performance requirements.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Explainable artificial intelligence and machine learning: A reality rooted perspective
    Emmert-Streib, Frank
    Yli-Harja, Olli
    Dehmer, Matthias
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (06)
  • [2] Explainable Unsupervised Machine Learning for Cyber-Physical Systems
    Wickramasinghe, Chathurika S.
    Amarasinghe, Kasun
    Marino, Daniel L.
    Rieger, Craig
    Manic, Milos
    IEEE ACCESS, 2021, 9 : 131824 - 131843
  • [3] Evaluating Explainable Machine Learning Models for Clinicians
    Scarpato, Noemi
    Nourbakhsh, Aria
    Ferroni, Patrizia
    Riondino, Silvia
    Roselli, Mario
    Fallucchi, Francesca
    Barbanti, Piero
    Guadagni, Fiorella
    Zanzotto, Fabio Massimo
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1436 - 1446
  • [4] Efficient Milling Quality Prediction with Explainable Machine Learning
    Gross, Dennis
    Spieker, Helge
    Gotlieb, Arnaud
    Knoblauch, Ricardo
    Elmansori, Mohamed
    IFAC PAPERSONLINE, 2024, 58 (19): : 43 - 48
  • [5] Explainable Machine Learning in Deployment
    Bhatt, Umang
    Xiang, Alice
    Sharma, Shubham
    Weller, Adrian
    Taly, Ankur
    Jia, Yunhan
    Ghosh, Joydeep
    Puri, Ruchir
    Moura, Jose M. F.
    Eckersley, Peter
    FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, : 648 - 657
  • [6] Predicting Hospital Stay Length Using Explainable Machine Learning
    Alsinglawi, Belal S.
    Alnajjar, Fady
    Alorjani, Mohammed S.
    Al-Shari, Osama Mohammed
    Munoz, Mauricio Novoa
    Mubin, Omar
    IEEE ACCESS, 2024, 12 : 90571 - 90585
  • [7] Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
    Dindorf, Carlo
    Ludwig, Oliver
    Simon, Steven
    Becker, Stephan
    Froehlich, Michael
    BIOENGINEERING-BASEL, 2023, 10 (05):
  • [8] Explainable machine learning models with privacy
    Bozorgpanah, Aso
    Torra, Vicenc
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2024, 13 (01) : 31 - 50
  • [9] Explainable machine learning models with privacy
    Aso Bozorgpanah
    Vicenç Torra
    Progress in Artificial Intelligence, 2024, 13 : 31 - 50
  • [10] Traffic noise assessment in urban Bulgaria using explainable machine learning
    Helbich, Marco
    Hagenauer, Julian
    Burov, Angel
    Dzhambov, Angel M.
    SUSTAINABLE CITIES AND SOCIETY, 2025, 120