On modules and rings having large absolute direct summands

被引:5
作者
Dao Thi, Trang [1 ]
Kosan, M. Tamer [2 ]
Tasdemir, Ozgur [3 ]
Quynh, Truong Cong [4 ]
机构
[1] Ho Chi Minh City Univ Food Ind, Fac Appl Sci, Ho Chi Minh City, Vietnam
[2] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye
[3] Trakya Univ, Fac Econ & Adm Sci, Dept Business Adm, Balkan Campus, Edirne, Turkiye
[4] Univ Danang, Univ Sci & Educ, Dept Math, Danang City, Vietnam
关键词
Automorphism-invariant module; CS module; essentially injective; fully invariant submodule; (large) ADS module; (large) ADS ring; ADS MODULES;
D O I
10.1080/00927872.2023.2223301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An ADS module is a direct sum of mutually injective modules, and an e-ADS module is a direct sum of mutually automorphism-invariant modules. In this paper, we introduce and study large ADS (LADS) modules that form a class of modules larger than ADS modules. An LADS module is a direct sum of mutually essentially injective modules. This result corresponds to the results of ADS and e-ADS modules.Communicated by Toma Albu
引用
收藏
页码:4949 / 4961
页数:13
相关论文
共 22 条
[1]   ADS modules [J].
Alahmadi, Adel ;
Jain, S. K. ;
Leroy, Andre .
JOURNAL OF ALGEBRA, 2012, 352 (01) :215-222
[2]  
Anderson F. W., 1974, Rings and Categories of Modules
[3]  
Burgess W. D., 1993, MODULES ABSOLUTE DIR
[4]   D3-MODULES VERSUS D4-MODULES - APPLICATIONS TO QUIVERS [J].
D'este, Gabriella ;
Keskin Tutuncu, Derya ;
Tribak, Rachid .
GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (03) :697-723
[5]  
Fuchs L., 1970, INFINTE ABELIAN GROU, P36
[6]   U-Modules with transitive perspectivity [J].
Ibrahim, Yasser ;
Yousif, Mohamed .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4501-4512
[7]  
Kado J, 2001, TRENDS MATH, P149
[8]  
Kasch F, 2009, FRONT MATH, P1
[9]   On image summand coinvariant modules and kernel summand invariant modules [J].
Keskin Tutuncu, Derya ;
Kuratomi, Yosuke ;
Shibata, Yoshiharu .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) :1456-1473
[10]   Essentially ADS modules and rings [J].
Kosan, M. Tamer ;
Truong Cong Quynh ;
Zemlicka, Jan .
RINGS, MODULES AND CODES, 2019, 727 :223-236