Combining First-Principles Kinetics and Experimental Data to Establish Guidelines for Product Selectivity in Electrochemical CO2 Reduction

被引:38
作者
Kastlunger, Georg [1 ]
Heenen, Hendrik H. [1 ,2 ]
Govindarajan, Nitish [1 ]
机构
[1] Tech Univ Denmark DTU, Catalysis Theory Ctr, Dept Phys, DK-2800 Lyngby, Denmark
[2] Fritz Haber Inst Max Planck Gesell, D-14195 Berlin, Germany
关键词
electrochemical CO2 reduction; constant-potential density functional theory; electrochemical kinetics; product selectivity; microkinetic modeling; CARBON-MONOXIDE; POLYCRYSTALLINE COPPER; ELECTROCATALYTIC CONVERSION; PH-DEPENDENCE; ELECTROREDUCTION; DIOXIDE; SURFACE; MULTICARBON; INSIGHTS; CU;
D O I
10.1021/acscatal.3c00228
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction of CO2 is envisioned as one of the most promising ways to close the industrial carbon cycle by producing high-value chemicals and fuels using renewable electricity. Although the performance of CO2 electrolyzers has improved substantially in the past decade, they still suffer from poor selectivity toward the most desired products, ethylene and ethanol. This is in part due to the fact that a detailed mechanistic understanding of the selectivity toward various products is still lacking, although such an understanding is essential for process optimization. Herein, we perform microkinetic simulations based on constant-potential density functional theory to elucidate the reaction pathways for CO2 electroreduction on Cu(100) toward the major multicarbon products. We find that ethylene is the first product that bifurcates from the oxygenates, followed by acetate. Acetaldehyde is a direct intermediate in the production of ethanol. We provide atomistic level insights on the major role played by the electrode potential and electrolyte pH in determining the selectivity toward ethylene, oxygenates, and methane and relate the origin of the selectivity to general trends in electrochemical reaction energetics. We verify the results of our microkinetic simulations to an experimental database of previously reported measurements. Finally, we suggest guidelines for improving the selectivity toward the specific products. Our study paves the way for the design of efficient CO2 electrolyzers for the production of targeted multicarbon products, thereby moving a step closer toward their widespread adaptation.
引用
收藏
页码:5062 / 5072
页数:11
相关论文
共 94 条
[1]   How are transition states modeled in heterogeneous electrocatalysis? [J].
Abidi, Nawras ;
Steinmann, Stephan N. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
[2]   Theoretical insight on reactivity trends in CO2 electroreduction across transition metals [J].
Akhade, Sneha A. ;
Luo, Wenjia ;
Nie, Xiaowa ;
Asthagiri, Aravind ;
Janik, Michael J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (04) :1042-1053
[3]   Electroreduction of Carbon Dioxide into Formate: A Comprehensive Review [J].
Al-Tamreh, Shaima A. ;
Ibrahim, Mohamed H. ;
El-Naas, Muftah H. ;
Vaes, Jan ;
Pant, Deepak ;
Benamor, Abdelbaki ;
Amhamed, Abdulkarem .
CHEMELECTROCHEM, 2021, 8 (17) :3207-3220
[4]  
[Anonymous], 2022, IPCCs Sixth Assessment Report,AR6)
[5]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[6]   Electroreduction of CO on Polycrystalline Copper at Low Overpotentials [J].
Bertheussen, Erlend ;
Hogg, Thomas V. ;
Abghoui, Younes ;
Engstfeld, Albert K. ;
Chorkendorff, Ib ;
Stephens, Ifan E. L. .
ACS ENERGY LETTERS, 2018, 3 (03) :634-640
[7]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[8]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[9]   SYMMETRY FACTOR AND TRANSFER COEFFICIENT - SOURCE OF CONFUSION IN ELECTRODE KINETICS [J].
BOCKRIS, JO ;
NAGY, Z .
JOURNAL OF CHEMICAL EDUCATION, 1973, 50 (12) :839-843
[10]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832