Integrating Global and Local Feature Selection for Multi-Label Learning

被引:7
|
作者
Zhang, Zan [1 ,2 ]
Liu, Lin [3 ]
Li, Jiuyong [3 ]
Wu, Xindong [4 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Intelligent Interconnected Syst Lab Anhui Prov, Minist Educ China, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Anhui, Peoples R China
[3] Univ South Australia, UniSA STEM, Adelaide, SA 5095, Australia
[4] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Minist Educ China, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label learning; label correlations; Local Feature Selection; DISCRIMINATIVE FEATURE-SELECTION; CLASSIFICATION;
D O I
10.1145/3532190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-label learning deals with the problem where an instance is associated with multiple labels simultaneously. Multi-label data is often of high dimensionality and has many noisy, irrelevant, and redundant features. As an important machine learning task, multi-label feature selection has received considerable attention in recent years due to its promising performance in dealing with high-dimensional multi-label data. Existing multi-label feature selection methods typically select the global features which are shared by all instances in a dataset. However, these multi-label feature selection methods may be suboptimal since they do not consider the specific characteristics of instances. In this paper, we propose a novel algorithm that integrates Global and Local Feature Selection (GLFS) to exploit both the global features and a subset of discriminative features shared only locally by a subgroup of instances in a multi-label dataset. Specifically, GLFS employs linear regression and l(2,1)-norm on the regression parameters to achieve simultaneous global and local feature selection. Moreover, the proposed algorithm has an effective mechanism for utilizing label correlations to improve the feature selection. Experiments on real-world multi-label datasets show the superiority of GLFS over the state-of-the-art multi-label feature selection methods.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Global and Adaptive Local Label Correlation for Multi-label Learning with Missing Labels
    Jiang, Qingxia
    Li, Peipei
    Zhang, Yuhong
    Hu, Xuegang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [42] A bipartite matching-based feature selection for multi-label learning
    Hashemi, Amin
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-Pour, Hossein
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (02) : 459 - 475
  • [43] Integration of deep learning model and feature selection for multi-label classification
    Ebrahimi, Hossein
    Majidzadeh, Kambiz
    Gharehchopogh, Farhad Soleimanian
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2871 - 2883
  • [44] Feature Selection for Multi-label Learning Using Mutual Information and GA
    Yu, Ying
    Wang, Yinglong
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 454 - 463
  • [45] A bipartite matching-based feature selection for multi-label learning
    Amin Hashemi
    Mohammad Bagher Dowlatshahi
    Hossein Nezamabadi-Pour
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 459 - 475
  • [46] Low-rank learning for feature selection in multi-label classification
    Lim, Hyunki
    PATTERN RECOGNITION LETTERS, 2023, 172 : 106 - 112
  • [47] Multi-label feature selection based on logistic regression and manifold learning
    Zhang, Yao
    Ma, Yingcang
    Yang, Xiaofei
    APPLIED INTELLIGENCE, 2022, 52 (08) : 9256 - 9273
  • [48] A novel approach for learning label correlation with application to feature selection of multi-label data
    Che, Xiaoya
    Chen, Degang
    Mi, Jusheng
    INFORMATION SCIENCES, 2020, 512 (512) : 795 - 812
  • [49] Mutual information-based label distribution feature selection for multi-label learning
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Shu, Wenhao
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [50] Multi-label learning with Relief-based label-specific feature selection
    Jiadong Zhang
    Keyu Liu
    Xibei Yang
    Hengrong Ju
    Suping Xu
    Applied Intelligence, 2023, 53 : 18517 - 18530