D-former: a U-shaped Dilated Transformer for 3D medical image segmentation

被引:0
作者
Wu, Yixuan [1 ]
Liao, Kuanlun [2 ]
Chen, Jintai [2 ]
Wang, Jinhong [2 ]
Chen, Danny Z. [3 ]
Gao, Honghao [4 ,5 ]
Wu, Jian [6 ,7 ]
机构
[1] Zhejiang Univ, Sch Med, Hangzhou 310030, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[3] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[4] Gachon Univ, Coll Future Ind, Seongnam 13120, South Korea
[5] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[6] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Hangzhou 310058, Peoples R China
[7] Zhejiang Univ, Sch Publ Hlth, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image analysis; Segmentation; Transformer; Long-range dependency; Position encoding; NETWORKS; ATTENTION;
D O I
10.1007/s00521-022-07859-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-aided medical image segmentation has been applied widely in diagnosis and treatment to obtain clinically useful information of shapes and volumes of target organs and tissues. In the past several years, convolutional neural network (CNN)-based methods (e.g., U-Net) have dominated this area, but still suffered from inadequate long-range information capturing. Hence, recent work presented computer vision Transformer variants for medical image segmentation tasks and obtained promising performances. Such Transformers modeled long-range dependency by computing pair-wise patch relations. However, they incurred prohibitive computational costs, especially on 3D medical images (e.g., CT and MRI). In this paper, we propose a new method called Dilated Transformer, which conducts self-attention alternately in local and global scopes for pair-wise patch relations capturing. Inspired by dilated convolution kernels, we conduct the global self-attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing computational costs. Based on this design of Dilated Transformer, we construct a U-shaped encoder-decoder hierarchical architecture called D-Former for 3D medical image segmentation. Experiments on the Synapse and ACDC datasets show that our D-Former model, trained from scratch, outperforms various competitive CNN-based or Transformer-based segmentation models at a low computational cost without time-consuming per-training process.
引用
收藏
页码:1931 / 1944
页数:14
相关论文
共 50 条
  • [1] D-former: a U-shaped Dilated Transformer for 3D medical image segmentation
    Yixuan Wu
    Kuanlun Liao
    Jintai Chen
    Jinhong Wang
    Danny Z. Chen
    Honghao Gao
    Jian Wu
    Neural Computing and Applications, 2023, 35 : 1931 - 1944
  • [2] Collaborative transformer U-shaped network for medical image segmentation
    Gao, Yufei
    Zhang, Shichao
    Shi, Lei
    Zhao, Guohua
    Shi, Yucheng
    APPLIED SOFT COMPUTING, 2025, 173
  • [3] U-shaped network based on Transformer for 3D point clouds semantic segmentation
    Zhang, Jiazhe
    Li, Xingwei
    Zhao, Xianfa
    Ge, Yizhi
    Zhang, Zheng
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 170 - 176
  • [4] Permutation invariant self-attention infused U-shaped transformer for medical image segmentation
    Patil, Sanjeet S.
    Ramteke, Manojkumar
    Rathore, Anurag S.
    NEUROCOMPUTING, 2025, 625
  • [5] DS-Former: A dual-stream encoding-based transformer for 3D medical image segmentation
    Zhang, Lei
    Zuo, Yi
    Jia, Yu
    Li, Dongze
    Zeng, Rui
    Li, Dong
    Chen, Junren
    Wang, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [6] 3D bi-directional transformer U-Net for medical image segmentation
    Fu, Xiyao
    Sun, Zhexian
    Tang, Haoteng
    Zou, Eric M.
    Huang, Heng
    Wang, Yong
    Zhan, Liang
    FRONTIERS IN BIG DATA, 2023, 5
  • [7] Efficient combined algorithm of Transformer and U-Net for 3D medical image segmentation
    Zhang, Mingyan
    Wang, Aixia
    Yang, Gang
    Li, Jingjiao
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4377 - 4382
  • [8] DAST: Differentiable Architecture Search with Transformer for 3D Medical Image Segmentation
    Yang, Dong
    Xu, Ziyue
    He, Yufan
    Nath, Vishwesh
    Li, Wenqi
    Myronenko, Andriy
    Hatamizadeh, Ali
    Zhao, Can
    Roth, Holger R.
    Xu, Daguang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 747 - 756
  • [9] nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer
    Zhou, Hong-Yu
    Guo, Jiansen
    Zhang, Yinghao
    Han, Xiaoguang
    Yu, Lequan
    Wang, Liansheng
    Yu, Yizhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4036 - 4045
  • [10] EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation
    Yang, Jingyi
    Jiao, Licheng
    Shang, Ronghua
    Liu, Xu
    Li, Ruiyang
    Xu, Longchang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (11) : 3229 - 3243