Periodic Riemann boundary value problem

被引:0
作者
Wang, Xiaoyin [1 ,2 ]
Du, Jinyuan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Function theory; poles; transformations; Riemann boundary value problem; periodic Riemann boundary value problem;
D O I
10.1080/17476933.2022.2035929
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the Riemann boundary value problems for the analytic functions with period a pi (a > 0) in the situation where the solution can be unbounded at z = +/-infinity i. When the jump curve is a closed contour, by using the tangent transformation zeta = tan(z/a), we transform the singularities +/-infinity i on the z plane to the singularities +/- i on the zeta plane. When the jump curve is the real axis, by using the transformation omega= e(iz), we transform the singularities +/-infinity i on the z plane to the singularities 0 and infinity on the omega plane. Thus, the original periodic Riemann boundary value problems are reduced to the classical Riemann boundary value problems whose solutions and the corresponding solvability conditions are well known.
引用
收藏
页码:1077 / 1092
页数:16
相关论文
共 14 条
[1]  
Chibrikova LI., 1956, JKAZAN U, V116, P59
[2]  
Chibrikova LI., 1977, RIEMANN BOUNDARY PRO
[3]  
Chibrikova LI., 1980, Achievements of Science and Technology. Series: Mathematical Analysis, V18, P3
[4]  
Du J., 1988, JWUHAN U NAT SCI ED, V2, P17
[5]  
Du JY, 2009, MATH COMPUT, V78, P891
[6]   On trigonometric and paratrigonometric Hermite interpolation [J].
Du, JY ;
Han, HL ;
Jin, GX .
JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) :74-99
[7]   Orthogonal trigonometric polynomials: Riemann-Hilbert analysis and relations with OPUC [J].
Du, Zhihua ;
Du, Jinyuan .
ASYMPTOTIC ANALYSIS, 2012, 79 (1-2) :87-132
[8]  
Gakhov FD., 1977, Boundary problems
[9]  
Lu J., 1963, ACTA MECH SIN CHIN S, V13, P343
[10]  
Lu J., 1964, ACTA MECH SIN CHIN S, V7, P316