Small Mahler Measures From Digraphs

被引:1
|
作者
Coyston, Joshua [1 ]
McKee, James [1 ]
机构
[1] Royal Holloway Univ London, Dept Math, Egham Hill, Egham TW20 0EX, Surrey, England
关键词
Mahler measure; digraphs; INTEGER SYMMETRIC-MATRICES; POLYNOMIALS;
D O I
10.1080/10586458.2021.1980462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We attach Mahler measures to digraphs and find combinatorial realizations of nearly all of the known low-degree (<= 180) small (< 1.3) one-variable Mahler measures. We find one new such measure not on either of the lists maintained by Mossinghoff and Sac-Epee. Considering limits of sequences of measures attached to families of digraphs, we get combinatorial explanations for 57 of the 61 known irreducible two-variable measures below 1.37.
引用
收藏
页码:527 / 539
页数:13
相关论文
共 50 条
  • [1] Small Mahler measures with bounds on the house and shortness
    El-Serafy, Salma
    Mckee, James
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [3] Zeta Mahler measures
    Akatsuka, Hirotaka
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2713 - 2734
  • [4] The values of Mahler measures
    Dixon, JD
    Dubickas, A
    MATHEMATIKA, 2004, 51 (101-02) : 131 - 148
  • [5] Minimal Mahler Measures
    Mossinghoff, Michael J.
    Rhin, Georges
    Wu, Qiang
    EXPERIMENTAL MATHEMATICS, 2008, 17 (04) : 451 - 458
  • [6] CLOSED SETS OF MAHLER MEASURES
    Smyth, Chris
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2359 - 2372
  • [7] On Numbers which are Mahler Measures
    Artūras Dubickas
    Monatshefte für Mathematik, 2004, 141 : 119 - 126
  • [8] Identities between Mahler measures
    Rodriguez-Villegas, F
    NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 223 - 229
  • [9] On numbers which are Mahler measures
    Dubickas, A
    MONATSHEFTE FUR MATHEMATIK, 2004, 141 (02): : 119 - 126
  • [10] Mahler measures in a cubic field
    Artūras Dubickas
    Czechoslovak Mathematical Journal, 2006, 56 : 949 - 956