共 81 条
A hybridization of evolution strategies with iterated greedy algorithm for no-wait flow shop scheduling problems
被引:8
作者:
Khurshid, Bilal
[1
]
Maqsood, Shahid
[2
]
Khurshid, Yahya
[1
]
Naeem, Khawar
[3
]
Khalid, Qazi Salman
[1
]
机构:
[1] Univ Engn & Technol, Dept Ind Engn, Peshawar 25000, Pakistan
[2] Univ Engn & Technol, Dept Ind Engn, Jalozai Campus, Peshawar 25000, Pakistan
[3] Hamad Bin Khalifa Univ HBKU, Qatar Fdn, Coll Sci & Engn, POB 34110, Doha, Qatar
关键词:
BEE COLONY ALGORITHM;
OPTIMIZATION ALGORITHM;
MINIMIZING MAKESPAN;
TOTAL TARDINESS;
SEARCH;
BLOCKING;
MINIMIZATION;
ADAPTATION;
FLOWSHOPS;
MECHANISM;
D O I:
10.1038/s41598-023-47729-x
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
This study investigates the no-wait flow shop scheduling problem and proposes a hybrid (HES-IG) algorithm that utilizes makespan as the objective function. To address the complexity of this NP-hard problem, the HES-IG algorithm combines evolution strategies (ES) and iterated greedy (IG) algorithm, as hybridizing algorithms helps different algorithms mitigate their weaknesses and leverage their respective strengths. The ES algorithm begins with a random initial solution and uses an insertion mutation to optimize the solution. Reproduction is carried out using (1 + 5)-ES, generating five offspring from one parent randomly. The selection process employs (mu + lambda)-ES, allowing excellent parent solutions to survive multiple generations until a better offspring surpasses them. The IG algorithm's straightforward search mechanism aids in further improving the solution and avoiding local minima. The destruction operator randomly removes d-jobs, which are then inserted one by one using a construction operator. The local search operator employs a single insertion approach, while the acceptance-rejection criteria are based on a constant temperature. Parameters of both ES and IG algorithms are calibrated using the Multifactor analysis of variance technique. The performance of the HES-IG algorithm is calibrated with other algorithms using the Wilcoxon signed test. The HES-IG algorithm is tested on 21 Nos. Reeves and 30 Nos. Taillard benchmark problems. The HES-IG algorithm has found 15 lower bound values for Reeves benchmark problems. Similarly, the HES-IG algorithm has found 30 lower bound values for the Taillard benchmark problems. Computational results indicate that the HES-IG algorithm outperforms other available techniques in the literature for all problem sizes.
引用
收藏
页数:22
相关论文