Chaos in coupled heteroclinic cycles and its piecewise-constant representation

被引:5
作者
Pikovsky, Arkady [1 ]
Nepomnyashchy, Alexander [2 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, Karl-Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Technion Israel Inst Technol, Dept Math, Haifa, Israel
基金
以色列科学基金会;
关键词
Heteroclinic cycle; Chaos; Synchronization; DYNAMICS; ATTRACTORS; BIFURCATIONS; POPULATIONS; COMPETITION; STABILITY; SYSTEMS; PRODUCT;
D O I
10.1016/j.physd.2023.133772
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two robust heteroclinic cycles rotating in opposite directions, coupled by diffusive terms. A complete synchronization is impossible in this system. Numerical studies show that chaos is abundant at low levels of coupling. With increasing coupling strength, several symmetry-changing transitions are observed, and finally, a stable periodic regime appears via an inverse period-doubling cascade. To reveal the behavior at extremely small couplings, a piecewise constant model for the dynamics is proposed. Within this model, we numerically construct a Poincare map for a chaotic state, which appears to be an expanding non-invertible circle map, thus confirming the abundance of chaos in the small coupling limit. We also show that within the piecewise constant description, there is a set of periodic solutions with different phase shifts between subsystems due to dead zones in the coupling. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 52 条
[21]   Desynchronization transitions in nonlinearly coupled phase oscillators [J].
Burylko, Oleksandr ;
Pikovsky, Arkady .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (17) :1352-1361
[22]  
Busse F.H., 1999, IMA Math. Appl., V115, P25
[23]   CONVECTION IN A ROTATING LAYER - SIMPLE CASE OF TURBULENCE [J].
BUSSE, FH ;
HEIKES, KE .
SCIENCE, 1980, 208 (4440) :173-175
[24]   A heteroclinic network in mode interaction with symmetry [J].
Castro, Sofia B. S. D. ;
Labouriau, Isabel S. ;
Podvigina, Olga .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (03) :359-396
[25]   Stability of quasi-simple heteroclinic cycles [J].
Garrido-da-Silva, L. ;
Castro, S. B. S. D. .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (01) :14-39
[26]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[27]   Chaotic attractors of relaxation oscillators [J].
Guckenheimer, John ;
Wechselberger, Martin ;
Young, Lai-Sang .
NONLINEARITY, 2006, 19 (03) :701-720
[28]  
Kijashko S. V., 1980, Sov. J. Commun. Technol. Electronics, V25, P74
[29]   Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability [J].
Komarov, M. A. ;
Osipov, G. V. ;
Suykens, J. A. K. ;
Rabinovich, M. I. .
CHAOS, 2009, 19 (01)
[30]   Effects of nonresonant interaction in ensembles of phase oscillators [J].
Komarov, Maxim ;
Pikovsky, Arkady .
PHYSICAL REVIEW E, 2011, 84 (01)