Precise characterization of nanometer-scale systems using interferometric scattering microscopy and Bayesian analysis

被引:3
作者
De Wit, Xander M. [1 ,2 ]
Paine, Amelia W. [1 ]
Martin, Caroline [1 ]
Goldfain, Aaron M. [1 ,3 ]
Garmann, Rees F. [1 ,4 ]
Manoharan, Vinothan N. [1 ,5 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA
[4] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
SINGLE; PARTICLES; TRACKING;
D O I
10.1364/AO.499389
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Interferometric scattering microscopy can image the dynamics of nanometer-scale systems. The typical approach to analyzing interferometric images involves intensive processing, which discards data and limits the precision of measurements. We demonstrate an alternative approach: modeling the interferometric point spread function and fitting this model to data within a Bayesian framework. This approach yields best-fit parameters, including the particle's three-dimensional position and polarizability, as well as uncertainties and correlations between these parameters. Building on recent work, we develop a model that is parameterized for rapid fitting. The model is designed to work with Hamiltonian Monte Carlo techniques that leverage automatic differentiation. We validate this approach by fitting the model to interferometric images of colloidal nanoparticles. We apply the method to track a diffusing particle in three dimensions, to directly infer the diffusion coefficient of a nanoparticle without calculating a mean-square displacement, and to quantify the ejection of DNA from an individual lambda phage virus, demonstrating that the approach can be used to infer both static and dynamic properties of nanoscale systems. (c) 2023 Optica Publishing Group
引用
收藏
页码:7205 / 7215
页数:11
相关论文
共 38 条
[21]   Multiscale modeling and analysis for high-fidelity interferometric scattering microscopy [J].
He, Yong ;
Lin, Shupei ;
Marc Louis Robert, Hadrien ;
Li, Hong ;
Zhang, Pu ;
Piliarik, Marek ;
Chen, Xue-Wen .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (27)
[22]  
Hoffman MD, 2014, J MACH LEARN RES, V15, P1593
[23]   Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells [J].
Huang, Yi-Fan ;
Zhuo, Guan-Yu ;
Chou, Chun-Yu ;
Lin, Cheng-Hao ;
Chang, Wen ;
Hsieh, Chia-Lung .
ACS NANO, 2017, 11 (03) :2575-2585
[24]   Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions [J].
Kashkanova, Anna D. ;
Blessing, Martin ;
Gemeinhardt, Andre ;
Soulat, Didier ;
Sandoghdar, Vahid .
NATURE METHODS, 2022, 19 (05) :586-+
[25]   Large depth-of-field tracking of colloidal spheres in holographic microscopy by modeling the objective lens [J].
Leahy, Brian ;
Alexander, Ronald ;
Martin, Caroline ;
Barkley, Solomon ;
Manoharan, Vinothan N. .
OPTICS EXPRESS, 2020, 28 (02) :1061-1075
[26]   Amplitude and Phase Spectra of Light Scattered from a Single Nanoparticle [J].
Lee, Hankyul ;
Park, Hyung Jun ;
Yeon, Gyu Jin ;
Kim, Zee Hwan .
ACS PHOTONICS, 2022, 9 (09) :3052-3059
[27]   Characterizing and tracking single colloidal particles with video holographic microscopy [J].
Lee, Sang-Hyuk ;
Roichman, Yohai ;
Yi, Gi-Ra ;
Kim, Shin-Hyun ;
Yang, Seung-Man ;
van Blaaderen, Alfons ;
van Oostrum, Peter ;
Grier, David G. .
OPTICS EXPRESS, 2007, 15 (26) :18275-18282
[28]   Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds [J].
Lin, Ying-Hsiu ;
Chang, Wei-Lin ;
Hsieh, Chia-Lung .
OPTICS EXPRESS, 2014, 22 (08) :9159-9170
[29]   Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization [J].
Mahmoodabadi, Reza Gholami ;
Taylor, Richard W. ;
Kaller, Martin ;
Spindler, Susann ;
Mazaheri, Mahdi ;
Kasaian, Kiarash ;
Sandoghdar, Vahid .
OPTICS EXPRESS, 2020, 28 (18) :25969-25988
[30]  
Martin C, 2022, NAT REV METHOD PRIME, V2, DOI 10.1038/s43586-022-00165-z