Precise characterization of nanometer-scale systems using interferometric scattering microscopy and Bayesian analysis

被引:3
作者
De Wit, Xander M. [1 ,2 ]
Paine, Amelia W. [1 ]
Martin, Caroline [1 ]
Goldfain, Aaron M. [1 ,3 ]
Garmann, Rees F. [1 ,4 ]
Manoharan, Vinothan N. [1 ,5 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA
[4] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
SINGLE; PARTICLES; TRACKING;
D O I
10.1364/AO.499389
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Interferometric scattering microscopy can image the dynamics of nanometer-scale systems. The typical approach to analyzing interferometric images involves intensive processing, which discards data and limits the precision of measurements. We demonstrate an alternative approach: modeling the interferometric point spread function and fitting this model to data within a Bayesian framework. This approach yields best-fit parameters, including the particle's three-dimensional position and polarizability, as well as uncertainties and correlations between these parameters. Building on recent work, we develop a model that is parameterized for rapid fitting. The model is designed to work with Hamiltonian Monte Carlo techniques that leverage automatic differentiation. We validate this approach by fitting the model to interferometric images of colloidal nanoparticles. We apply the method to track a diffusing particle in three dimensions, to directly infer the diffusion coefficient of a nanoparticle without calculating a mean-square displacement, and to quantify the ejection of DNA from an individual lambda phage virus, demonstrating that the approach can be used to infer both static and dynamic properties of nanoscale systems. (c) 2023 Optica Publishing Group
引用
收藏
页码:7205 / 7215
页数:11
相关论文
共 38 条
[1]   Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy [J].
Andrecka, Joanna ;
Arroyo, Jaime Ortega ;
Takagi, Yasuharu ;
de Wit, Gabrielle ;
Fineberg, Adam ;
MacKinnon, Lachlan ;
Young, Gavin ;
Sellers, James R. ;
Kukura, Philipp .
ELIFE, 2015, 4
[2]   Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging [J].
Arroyo, Jaime Ortega ;
Cole, Daniel ;
Kukura, Philipp .
NATURE PROTOCOLS, 2016, 11 (04) :617-633
[3]   Physical modeling of interference enhanced imaging and characterization of single nanoparticles [J].
Avci, Oguzhan ;
Adato, Ronen ;
Ozkumur, Ayca Yalcin ;
Unlu, M. Selim .
OPTICS EXPRESS, 2016, 24 (06) :6094-6114
[4]   Holographic Microscopy With Python']Python and HoloPy [J].
Barkley, Solomon ;
Dimiduk, Thomas G. ;
Fung, Jerome ;
Kaz, David M. ;
Manoharan, Vinothan N. ;
McGorty, Ryan ;
Perry, Rebecca W. ;
Wang, Anna .
COMPUTING IN SCIENCE & ENGINEERING, 2020, 22 (05) :72-81
[5]  
Bastien Frederic, 2023, Zenodo, DOI 10.5281/ZENODO.7662296
[6]   Fast Bayesian inference of optical trap stiffness and particle diffusion [J].
Bera, Sudipta ;
Paul, Shuvojit ;
Singh, Rajesh ;
Ghosh, Dipanjan ;
Kundu, Avijit ;
Banerjee, Ayan ;
Adhikari, R. .
SCIENTIFIC REPORTS, 2017, 7
[7]  
Bergstra James., 2010, Proc. 9th Python in Science Conf, P1
[8]  
Bohren C.F., 1983, ABSORPTION SCATTERIN
[9]   Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review [J].
Bonyadi, Mohammad Reza ;
Michalewicz, Zbigniew .
EVOLUTIONARY COMPUTATION, 2017, 25 (01) :1-54
[10]   Flow visualization and flow cytometry with holographic video microscopy [J].
Cheong, Fook Chiong ;
Sun, Bo ;
Dreyfus, Remi ;
Amato-Grill, Jesse ;
Xiao, Ke ;
Dixon, Lisa ;
Grier, David G. .
OPTICS EXPRESS, 2009, 17 (15) :13071-13079