Review of effects of zero-carbon fuel ammonia addition on soot formation in combustion

被引:28
作者
Chen, Chen [1 ,2 ]
Liu, Dong [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, MIIT Key Lab Thermal Control Elect Equipment, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Adv Combust Lab, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon-free fuel; Ammonia; Fuel addition; Combustion; Soot; Polycyclic aromatic hydrocarbon; COUNTERFLOW DIFFUSION FLAMES; LAMINAR BURNING VELOCITY; PERFORMANCE-CHARACTERISTICS; PREMIXED FLAMES; CLIMATE-CHANGE; ETHYLENE; CHEMISTRY; MECHANISM; EMISSIONS; MIXTURES;
D O I
10.1016/j.rser.2023.113640
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon-free fuel ammonia is considered to contribute to the decarbonization of energy consumption structure. Blending ammonia with conventional carbon-based fuels can often reduce soot emission while improving the combustion performance of ammonia. This work provided an overview of soot formation characteristics and regulation mechanisms in the case of ammonia blending with gaseous/liquid/solid carbon-based fuels. Effects of adding ammonia were divided into three categories, namely dilution, thermal and chemical effects. These competed with each other and ultimately resulted in a reduction in primary particle size and soot volume fraction compared to the combustion of pure carbon-based fuels. Of these, the regulation mechanism of chemical effect was the most complex, mainly divided into two aspects. First, nitrogen-containing species formed by ammonia decomposition could inhibit soot formation by robbing available carbon atoms which should have formed soot. On the other hand, nitrogenous species might participate in carbon layers growth by combining with polycyclic aromatic hydrocarbons, and also consume hydroxyl radicals in flames to inhibit soot oxidation. However, there were some controversial parts of current research, which hindered the efficient utilization of ammonia and pollution control. Future research should focus on the interactions between nitrogen-containing species and hydrocarbons lager than C3 at broad pressures, to accurately understand detailed mechanisms by which adding ammonia regulates soot emission.
引用
收藏
页数:11
相关论文
共 95 条
  • [1] Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method
    An, Zhenhua
    Zhang, Meng
    Zhang, Weijie
    Mao, Runze
    Wei, Xutao
    Wang, Jinhua
    Huang, Zuohua
    Tan, Houzhang
    [J]. FUEL, 2021, 304
  • [2] [Anonymous], 2015, ANSYS Chemkin 17.0(15151)
  • [3] Kinetic modeling of soot formation with detailed chemistry and physics:: Laminar premixed flames of C2 hydrocarbons
    Appel, J
    Bockhorn, H
    Frenklach, M
    [J]. COMBUSTION AND FLAME, 2000, 121 (1-2) : 122 - 136
  • [4] A review of the properties and hazards of some alternative fuels
    Astbury, G. R.
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2008, 86 (B6) : 397 - 414
  • [5] Soot formation in laminar flames of ethylene/ammonia
    Bennett, Anthony M.
    Liu, Peng
    Li, Zepeng
    Kharbatia, Najeh M.
    Boyette, Wesley
    Masri, Assaad R.
    Roberts, William L.
    [J]. COMBUSTION AND FLAME, 2020, 220 : 210 - 218
  • [6] Bockhorn H., 1981, S INT COMBUSTION, V18, P1137
  • [7] Soot formation in turbulent flames of ethylene/hydrogen/ammonia
    Boyette, Wesley R.
    Steinmetz, Scott A.
    Guiberti, Thibault F.
    Dunn, Matthew J.
    Roberts, William L.
    Masri, Assaad R.
    [J]. COMBUSTION AND FLAME, 2021, 226 : 315 - 324
  • [8] Impact of exhaust gas recirculation on ignition delay times of gasoline fuel: An experimental and modeling study
    Cai, Liming
    Ramalingam, Ajoy
    Minwegen, Heiko
    Heufer, Karl Alexander
    Pitsch, Heinz
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) : 639 - 647
  • [9] Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion
    Cai, Tao
    Zhao, Dan
    Gutmark, Ephraim
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 458
  • [10] A review on ammonia, ammonia-hydrogen and ammonia-methane fuels
    Chai, Wai Siong
    Bao, Yulei
    Jin, Pengfei
    Tang, Guang
    Zhou, Lei
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 147