RAAL: Resource Aware Active Learning for Multifidelity Efficient Optimization

被引:5
作者
Grassi, Francesco [1 ]
Manganini, Giorgio [1 ]
Garraffa, Michele [1 ]
Mainini, Laura [2 ]
机构
[1] Raytheon Technol Res Ctr, Autonomous & Intelligent Syst Dept, Cork T23 XN53, Ireland
[2] Raytheon Technol Res Ctr, Appl Res & Technol, Collins Aerosp, Cork T23 XN53, Ireland
关键词
GLOBAL OPTIMIZATION; SURROGATE; UNCERTAINTY; SELECTION; DESIGN; MODELS;
D O I
10.2514/1.J061383
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
[No abstract available]
引用
收藏
页码:2744 / 2753
页数:10
相关论文
共 48 条
[21]   Sequential kriging optimization using multiple-fidelity evaluations [J].
Huang, D. ;
Allen, T. T. ;
Notz, W. I. ;
Miller, R. A. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 32 (05) :369-382
[22]   Efficient global optimization of expensive black-box functions [J].
Jones, DR ;
Schonlau, M ;
Welch, WJ .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) :455-492
[23]   Predicting the output from a complex computer code when fast approximations are available [J].
Kennedy, MC ;
O'Hagan, A .
BIOMETRIKA, 2000, 87 (01) :1-13
[24]   A comparison study of two multifidelity methods for aerodynamic optimization [J].
Kontogiannis, Spyridon G. ;
Demange, Jean ;
Savill, A. Mark ;
Kipouros, Timoleon .
AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 97
[25]  
Kushner H. J., 1964, Journal of Basic Engineering, V86, P97, DOI [DOI 10.1115/1.3653121, 10.1115/1.3653121]
[26]  
Lam R., 2015, 56 AIAAASCEAHSASC ST, DOI DOI 10.2514/6.2015-0143
[27]   RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY [J].
Le Gratiet, Loic ;
Garnier, Josselin .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (05) :365-386
[28]  
Lizotte D, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P944
[29]   The common optimization INterface for operations research: Promoting open-source software in the operations research community [J].
Lougee-Heimer, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (01) :57-66
[30]  
Mainini L., 2022, PREPRINT, DOI [10.48550/arXiv, DOI 10.48550/ARXIV]