Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission

被引:42
作者
Chen, Yitong [1 ,2 ]
Zhou, Tiankuang [1 ,2 ]
Wu, Jiamin [1 ,2 ,3 ]
Qiao, Hui [1 ,2 ]
Lin, Xing [2 ,3 ,4 ]
Fang, Lu [2 ,3 ,4 ]
Dai, Qionghai [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR PROPAGATION; GN-MODEL; NETWORKS; CHALLENGES; MODULATION; LIGHT;
D O I
10.1126/sciadv.adf8437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Following the explosive growth of global data, there is an ever-increasing demand for high-throughput process-ing in image transmission systems. However, existing methods mainly rely on electronic circuits, which severely limits the transmission throughput. Here, we propose an end-to-end all-optical variational autoencoder, named photonic encoder-decoder (PED), which maps the physical system of image transmission into an optical gener-ative neural network. By modeling the transmission noises as the variation in optical latent space, the PED es-tablishes a large-scale high-throughput unsupervised optical computing framework that integrates main computations in image transmission, including compression, encryption, and error correction to the optical domain. It reduces the system latency of computation by more than four orders of magnitude compared with the state-of-the-art devices and transmission error ratio by 57% than on-off keying. Our work points to the direction for a wide range of artificial intelligence-based physical system designs and next-generation communications.
引用
收藏
页数:11
相关论文
共 61 条
[1]  
Agrawal G. P., 2011, Fiber-Optic Communication Systems, V4
[2]  
[Anonymous], 2015, P IEEE C COMPUTER VI
[3]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[4]   Kuen Charles Kao (1933-2018) [J].
Bayvel, Polina .
NATURE, 2018, 563 (7731) :326-326
[5]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[6]   Integrated SOA-PIN Detector for High-Speed Short Reach Applications [J].
Caillaud, Christophe ;
Chanclou, Philippe ;
Blache, Fabrice ;
Angelini, Philippe ;
Duval, Bernadette ;
Charbonnier, Philippe ;
Lanteri, Delphine ;
Glastre, Genevieve ;
Achouche, Mohand .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (08) :1596-1601
[7]   Neural networks within multi-core optic fibers [J].
Cohen, Eyal ;
Malka, Dror ;
Shemer, Amir ;
Shahmoon, Asaf ;
Zalevsky, Zeev ;
London, Michael .
SCIENTIFIC REPORTS, 2016, 6
[8]  
Dhawan S., 2011, International Journal of electronics & Communication technology, V2, P22
[9]   On Probabilistic Shaping of Quadrature Amplitude Modulation for the Nonlinear Fiber Channel [J].
Fehenberger, Tobias ;
Alvarado, Alex ;
Bocherer, Georg ;
Hanik, Norbert .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (21) :5063-5073
[10]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+