Data on data: An analysis of data usage and analytics in the agricultural supply chain

被引:3
|
作者
Monaco Neto, Lourival Carmo [1 ]
Brewer, Brady E. [1 ,2 ]
Gray, Allan W. [1 ]
机构
[1] Purdue Univ, W Lafayette, IN USA
[2] Purdue Univ, 403 W State St, W Lafayette, IN 47907 USA
关键词
agribusiness; data; data analytics; supply chain;
D O I
10.1002/aepp.13348
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
The amount of data being collected throughout the agricultural supply chain has increased in both volume and velocity. All signs indicate that this will only increase as data collection technologies become more cost effective and prevalent throughout the supply chain. Previous work in this area has focused on data collection at the farm level. Our study focuses on data that originates at five different stages of the agricultural supply chain off the farm and how these stages view their firm's data collection and analysis efforts. We find that there is heterogeneity in the data collection efforts and analysis across the agricultural supply chain. Improved customer satisfaction and improved decision making were the most important benefits to data collection. We also find that the expected benefits and challenges for implementation of these efforts are not universal. Companies that exist upstream in the supply chain are more likely to disagree on intended benefits and challenges.
引用
收藏
页码:1577 / 1591
页数:15
相关论文
共 50 条
  • [1] Quality Analytics in a Big Data Supply Chain Commodity Data Analytics for Quality Engineering
    Tan, Julian S. K.
    Ang, Ai Kiar
    Lu, Liu
    Gan, Sheena W. Q.
    Corral, Marilyn G.
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 3455 - 3463
  • [2] Data science and big data analytics: a systematic review of methodologies used in the supply chain and logistics research
    Jahani, Hamed
    Jain, Richa
    Ivanov, Dmitry
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [3] Supply chain data analytics and supply chain agility: a fuzzy sets (fsQCA) approach
    Shamout, Mohamed Dawood
    INTERNATIONAL JOURNAL OF ORGANIZATIONAL ANALYSIS, 2020, 28 (05) : 1055 - 1067
  • [4] Big Data Analytics in Supply Chain Management: A Qualitative Study
    Aljabhan, Basim
    Abeyie, Melese
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [5] Big Data Analytics on The Supply Chain Management: A Significant Impact
    Handanga, Suilety
    Bernardino, Jorge
    Pedrosa, Isabel
    PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,
  • [6] A note on big data analytics capability development in supply chain
    Jha, Ashish Kumar
    Agi, Maher A. N.
    Ngai, Eric W. T.
    DECISION SUPPORT SYSTEMS, 2020, 138
  • [7] Aligning Data Analytics and Supply Chain Strategy in the Biopharmaceutical Industry
    Holder, Mark
    Devpura, Amit
    Lee, Anthony
    Chandran, Suresh
    ALIGNING BUSINESS STRATEGIES AND ANALYTICS: BRIDGING BETWEEN THEORY AND PRACTICE, 2019, : 67 - 78
  • [8] Big Data and Business Analytics in the Supply Chain: A Review of the Literature
    Isasi, N. K. G.
    Frazzon, E. M.
    Uriona, M.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (10) : 3382 - 3391
  • [9] Big Data and Business Analytics in the Supply Chain: A Review of the Literature
    Universidade Federal de Santa Catarina , Florianópolis, Santa Catarina, Brazil
    IEEE. Lat. Am. Trans., 10 (3382-3391): : 3382 - 3391
  • [10] Digitalizing procurement: the impact of data analytics on supply chain performance
    Hallikas, Jukka
    Immonen, Mika
    Brax, Saara
    SUPPLY CHAIN MANAGEMENT-AN INTERNATIONAL JOURNAL, 2021, 26 (05) : 629 - 646