Variable selection in additive models via hierarchical sparse penalty

被引:1
作者
Wen, Canhong [1 ]
Chen, Anan [1 ]
Wang, Xueqin [1 ]
Pan, Wenliang [2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[3] Macau Univ Sci & Technol, Fac Innovat Engn, Macau, Peoples R China
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2024年 / 52卷 / 01期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Group subset selection; hierarchical penalty; sparse additive models; variable selection; ALZHEIMERS-DISEASE; SUBSET-SELECTION; REGRESSION; SHRINKAGE;
D O I
10.1002/cjs.11752
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
As a popular tool for nonlinear models, additive models work efficiently with nonparametric estimation. However, naively applying the existing regularization method can result in misleading outcomes because of the basis sparsity in each variable. In this article, we consider variable selection in additive models via a combination of variable selection and basis selection, yielding a joint selection of variables and basis functions. A novel penalty function is proposed for basis selection to address the hierarchical structure as well as the sparsity assumption. Under some mild conditions, we establish theoretical properties including the support recovery consistency. We also derive the necessary and sufficient conditions for the estimator and develop an efficient algorithm based on it. Our new methodology and results are supported by simulation and real data examples.
引用
收藏
页码:162 / 194
页数:33
相关论文
共 38 条
  • [1] Stimulating the Brain's Language Network: Syntactic Ambiguity Resolution after TMS to the Inferior Frontal Gyrus and Middle Temporal Gyrus
    Acheson, Daniel J.
    Hagoort, Peter
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2013, 25 (10) : 1664 - 1677
  • [2] Bach FR, 2008, J MACH LEARN RES, V9, P1179
  • [3] Bertsimas D, 2020, STAT SCI, V35, P555, DOI 10.1214/19-STS701
  • [4] BEST SUBSET SELECTION VIA A MODERN OPTIMIZATION LENS
    Bertsimas, Dimitris
    King, Angela
    Mazumder, Rahul
    [J]. ANNALS OF STATISTICS, 2016, 44 (02) : 813 - 852
  • [5] A sparse additive model for high-dimensional interactions with an exposure variable
    Bhatnagar, Sahir R.
    Lu, Tianyuan
    Lovato, Amanda
    Olds, David L.
    Kobor, Michael S.
    Meaney, Michael J.
    O'Donnell, Kieran
    Yang, Archer Y.
    Greenwood, Celia M. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [6] NUMERICAL METHODS FOR COMPUTING ANGLES BETWEEN LINEAR SUBSPACES
    BJORCK, A
    GOLUB, GH
    [J]. MATHEMATICS OF COMPUTATION, 1973, 27 (123) : 579 - 594
  • [7] Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI
    Bohbot, Veronique D.
    Allen, John J. B.
    Dagher, Alain
    Dumoulin, Serge O.
    Evans, Alan C.
    Petrides, Michael
    Kalina, Miroslav
    Stepankova, Katerina
    Nadel, Lynn
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9 : 1 - 17
  • [8] Carlson N.R., 2012, Physiology of Behavior
  • [9] Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy
    Di Paola, M.
    Macaluso, E.
    Carlesimo, G. A.
    Tomaiuolo, F.
    Worsley, K. J.
    Fadda, L.
    Caltagirone, C.
    [J]. JOURNAL OF NEUROLOGY, 2007, 254 (06) : 774 - 781
  • [10] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360