Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care

被引:42
作者
Corti, Chiara [1 ,2 ,9 ]
Cobanaj, Marisa [3 ]
Dee, Edward C. [4 ]
Criscitiello, Carmen [1 ,2 ]
Tolaney, Sara M. [5 ]
Celi, Leo A. [6 ,7 ,8 ]
Curigliano, Giuseppe [1 ,2 ]
机构
[1] IRCCS, European Inst Oncol, Div New Drugs & Early Drug Dev Innovat Therapies, I-20141 Milan, Italy
[2] Univ Milan, Dept Oncol & Haematol DIPO, I-20122 Milan, Italy
[3] OncoRay, Natl Ctr Radiat Res Oncol HZDR, D-01309 Dresden, Germany
[4] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY 10065 USA
[5] Dana Farber Canc Inst, Boston, MA 02215 USA
[6] Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA 02215 USA
[7] MIT, Lab Computat Physiol, Cambridge, MA 02139 USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[9] IRCCS, European Inst Oncol, Div New Drugs & Early Drug Dev Innovat Therapies, Via Ripamonti 435, I-20141 Milan, Italy
关键词
Artificial intelligence; Bias; Decision support; Outcome prediction; Equity; Precision medicine; DEEP LEARNING-MODEL; PATHOLOGY; MACHINE; VALIDATION; PREDICTION; HEALTH;
D O I
10.1016/j.ctrv.2022.102498
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) has experienced explosive growth in oncology and related specialties in recent years. The improved expertise in data capture, the increased capacity for data aggregation and analytic power, along with decreasing costs of genome sequencing and related biologic "omics", set the foundation and need for novel tools that can meaningfully process these data from multiple sources and of varying types. These advances provide value across biomedical discovery, diagnosis, prognosis, treatment, and prevention, in a multimodal fashion. However, while big data and AI tools have already revolutionized many fields, medicine has partially lagged due to its complexity and multi-dimensionality, leading to technical challenges in developing and vali-dating solutions that generalize to diverse populations. Indeed, inner biases and miseducation of algorithms, in view of their implementation in daily clinical practice, are increasingly relevant concerns; critically, it is possible for AI to mirror the unconscious biases of the humans who generated these algorithms. Therefore, to avoid worsening existing health disparities, it is critical to employ a thoughtful, transparent, and inclusive approach that involves addressing bias in algorithm design and implementation along the cancer care continuum.In this review, a broad landscape of major applications of AI in cancer care is provided, with a focus on cancer research and precision medicine. Major challenges posed by the implementation of AI in the clinical setting will be discussed. Potentially feasible solutions for mitigating bias are provided, in the light of promoting cancer health equity.
引用
收藏
页数:9
相关论文
共 88 条
[1]   Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association [J].
Abels, Esther ;
Pantanowitz, Liron ;
Aeffner, Famke ;
Zarella, Mark D. ;
van der Laak, Jeroen ;
Bui, Marilyn M. ;
Vemuri, Venkata N. P. ;
Parwani, Anil V. ;
Gibbs, Jeff ;
Agosto-Arroyo, Emmanuel ;
Beck, Andrew H. ;
Kozlowski, Cleopatra .
JOURNAL OF PATHOLOGY, 2019, 249 (03) :286-294
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]  
[Anonymous], IMAGE DEFACING USING
[4]  
[Anonymous], 2022, MIT TECHNOL REV
[5]  
[Anonymous], 2019, Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD)-discussion paper and request for feedback
[6]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[7]   Making Big Data Useful for Health Care: A Summary of the Inaugural MIT Critical Data Conference [J].
Badawi, Omar ;
Brennan, Thomas ;
Celi, Leo Anthony ;
Feng, Mengling ;
Ghassemi, Marzyeh ;
Ippolito, Andrea ;
Johnson, Alistair ;
Mark, Roger G. ;
Mayaud, Louis ;
Moody, George ;
Moses, Christopher ;
Naumann, Tristan ;
Nikore, Vipan ;
Pimentel, Marco ;
Pollard, Tom J. ;
Santos, Mauro ;
Stone, David J. ;
Zimolzak, Andrew .
JMIR MEDICAL INFORMATICS, 2014, 2 (02) :41-51
[8]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[9]   OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow [J].
Bathke, Jochen ;
Luehken, Gesine .
BMC BIOINFORMATICS, 2021, 22 (01)
[10]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32