Derivation of the stochastic Burgers equation from totally asymmetric interacting particle systems

被引:2
作者
Hayashi, Kohei [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
KPZ equation; Stochastic Burgers equation; Interacting particle systems; q-TASEP; DIRECTED POLYMERS; LIMIT;
D O I
10.1016/j.spa.2022.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider equilibrium fluctuations for a class of totally asymmetric zero-range type interacting particle systems, which is particularly related to q-totally asymmetric simple exclusion processes (q-TASEPs). As a main result, we show that density fluctuation of our process converges to the stationary energy solution of the stochastic Burgers equation. Our proof is based on the second-order Boltzmann-Gibbs principle and a Taylor expansion argument.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 201
页数:22
相关论文
共 27 条
  • [11] ENERGY SOLUTIONS OF KPZ ARE UNIQUE
    Gubinelli, Massimiliano
    Perkowski, Nicolas
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (02) : 427 - 471
  • [12] KPZ Reloaded
    Gubinelli, Massimiliano
    Perkowski, Nicolas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 165 - 269
  • [13] PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES
    Gubinelli, Massimiliano
    Imkeller, Peter
    Perkowski, Nicolas
    [J]. FORUM OF MATHEMATICS PI, 2015, 3
  • [14] A theory of regularity structures
    Hairer, M.
    [J]. INVENTIONES MATHEMATICAE, 2014, 198 (02) : 269 - 504
  • [15] Solving the KPZ equation
    Hairer, Martin
    [J]. ANNALS OF MATHEMATICS, 2013, 178 (02) : 559 - 664
  • [16] PINNING AND ROUGHENING OF DOMAIN-WALLS IN ISING SYSTEMS DUE TO RANDOM IMPURITIES
    HUSE, DA
    HENLEY, CL
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (25) : 2708 - 2711
  • [17] DIFFUSION OF DIRECTED POLYMERS IN A RANDOM ENVIRONMENT
    IMBRIE, JZ
    SPENCER, T
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (3-4) : 609 - 626
  • [18] Stationary directed polymers and energy solutions of the Burgers equation
    Jara, Milton
    Moreno Flores, Gregorio R.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (10) : 5973 - 5998
  • [19] Scaling of the Sasamoto-Spohn model in equilibrium
    Jara, Milton
    Moreno Flores, Gregorio R.
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [20] DYNAMIC SCALING OF GROWING INTERFACES
    KARDAR, M
    PARISI, G
    ZHANG, YC
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 889 - 892