Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation
被引:3
作者:
Jiang, Yidong
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Jiang, Yidong
[1
]
Gu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Gu, Xin
[1
]
Shi, Jixin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Shi, Jixin
[1
]
Shi, Yixiang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Shi, Yixiang
[1
]
Cai, Ningsheng
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Cai, Ningsheng
[1
]
机构:
[1] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
Liquid antimony anode;
Solid oxide fuel cells;
Direct kerosene conversion;
Gas-electricity co-generation;
Series power generation;
THERMAL-DECOMPOSITION;
METHANE PYROLYSIS;
MOLTEN SB;
TIN ANODE;
JP-8;
FUEL;
ELECTROLYTE;
STABILITY;
AUXILIARY;
CORROSION;
SYSTEM;
D O I:
10.1016/j.energy.2022.125758
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Kerosene, as a widely used liquid hydrocarbon fuel, is difficult to convert directly in solid oxide fuel cells (SOFCs) due to the coking issue. Liquid antimony anodes (LAAs) are promising for converting complex hydrocarbon fuels, but the intrinsic low open circuit voltage (0.72 V at 750 degrees C) limits the energy efficiency of LAA-SOFCs. In this paper, we propose a method using LAA-SOFCs as an electrochemical partial oxidation reformer of kerosene, which has the potential to co-generate electricity and syngas. The conversion processes for kerosene in the different components of LAAs were investigated. In liquid Sb2O3, kerosene was partially oxidized into gaseous products with an oxygen/carbon ratio of 1.3-2 at 750-900 degrees C, which can be directly used as reforming feedstock to produce syngas. We also measured an LAA-SOFC with sulfur-containing kerosene as the fuel for 650 h at 750 degrees C, and the stable cell performance demonstrated the good durability of the cell. Comparison between the gas-electricity co-generation method and conventional fuel processing methods demonstrates that LAA-SOFCs are attractive as a primary gas-electricity co-generation module for high-efficiency, long-term kerosene-fuelled series power generation systems.