A New Calculus for Intuitionistic Strong Lob Logic: Strong Termination and Cut-Elimination, Formalised

被引:2
作者
Shillito, Ian [1 ]
van der Giessen, Iris [2 ]
Gore, Rajeev [3 ,4 ]
Iemhoff, Rosalie [5 ]
机构
[1] Australian Natl Univ, Canberra, Australia
[2] Univ Birmingham, Birmingham, England
[3] Vienna Univ Technol, Vienna, Austria
[4] Polish Acad Sci, Warsaw, Poland
[5] Univ Utrecht, Utrecht, Netherlands
来源
AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023 | 2023年 / 14278卷
基金
欧盟地平线“2020”;
关键词
Intuitionistic provability logic; Cut-elimination; Backward proof search; Interactive theorem proving; Proof theory; PROVABILITY LOGIC; SEQUENT CALCULI; MODAL LOGIC;
D O I
10.1007/978-3-031-43513-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a new sequent calculus that enjoys syntactic cut-elimination and strongly terminating backward proof search for the intuitionistic Strong Lob logic iSL, an intuitionistic modal logic with a provability interpretation. A novel measure on sequents is used to prove both the termination of the naive backward proof search strategy, and the admissibility of cut in a syntactic and direct way, leading to a straight-forward cut-elimination procedure. All proofs have been formalised in the interactive theorem prover Coq.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 46 条
[1]   Uniform Interpolation from Cyclic Proofs: The Case of Modal Mu-Calculus [J].
Afshari, Bahareh ;
Leigh, Graham E. ;
Turata, Guillermo Menendez .
AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2021, 2021, 12842 :335-353
[2]  
Akbar Tabatabai A., 2022, College Publications, DOI [10.48550/arXiv.2208.04607, DOI 10.48550/ARXIV.2208.04607]
[3]  
Tabatabai AA, 2018, Arxiv, DOI [arXiv:1808.06258, 10.48550/arXiv.1808.06258, DOI 10.48550/ARXIV.1808.06258]
[4]  
[Anonymous], 1986, Studia Logica
[5]   The Σl -provability logic of HA [J].
Ardeshir, Mohammad ;
Mojtahedi, Mojtaba .
ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (10) :997-1043
[6]  
Bellin Gianluigi, 2001, P METHODS MODALITIES, V2
[7]  
Bilkova M., 2006, Ph.D. thesis
[8]   Cut Elimination for GLS Using the Terminability of its Regress Process [J].
Brighton, Jude .
JOURNAL OF PHILOSOPHICAL LOGIC, 2016, 45 (02) :147-153
[9]   Formalized meta-theory of sequent calculi for linear logics [J].
Chaudhuri, Kaustuv ;
Lima, Leonardo ;
Reis, Giselle .
THEORETICAL COMPUTER SCIENCE, 2019, 781 :24-38
[10]   A Formally Verified Cut-Elimination Procedure for Linear Nested Sequents for Tense Logic [J].
D'Abrera, Caitlin ;
Dawson, Jeremy ;
Gore, Rajeev .
AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2021, 2021, 12842 :281-298