Electron-Ion Heating Partition in Imbalanced Solar-wind Turbulence

被引:6
作者
Squire, Jonathan [1 ]
Meyrand, Romain [1 ]
Kunz, Matthew W. [2 ,3 ]
机构
[1] Univ Otago, Phys Dept, Dunedin 9010, New Zealand
[2] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA
[3] Princeton Plasma Phys Lab, POB 451, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
INNER HELIOSPHERE; CYCLOTRON WAVES; ENERGY BUDGET; ALFVEN-WAVE; PROTON; TEMPERATURES; SIMULATIONS; SIGNATURE; EVOLUTION; DIFFUSION;
D O I
10.3847/2041-8213/ad0779
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A likely candidate mechanism to heat the solar corona and solar wind is low-frequency "Alfvenic" turbulence sourced by magnetic fluctuations near the solar surface. Depending on its properties, such turbulence can heat different species via different mechanisms, and the comparison of theoretical predictions to observed temperatures, wind speeds, anisotropies, and their variation with heliocentric radius provides a sensitive test of this physics. Here we explore the importance of normalized cross helicity, or imbalance, for controlling solar-wind heating, since it is a key parameter of magnetized turbulence and varies systematically with wind speed and radius. Based on a hybrid-kinetic simulation in which the forcing's imbalance decreases with time-a crude model for a plasma parcel entrained in the outflowing wind-we demonstrate how significant changes to the turbulence and heating result from the "helicity barrier" effect. Its dissolution at low imbalance causes its characteristic features-strong perpendicular ion heating with a steep "transition-range" drop in electromagnetic fluctuation spectra-to disappear, driving a larger fraction of the energy into electrons and parallel ion heat, and halting the emission of ion-scale waves. These predictions seem to agree with a diverse array of solar-wind observations, offering to explain a variety of complex correlations and features within a single theoretical framework.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Thermal Energy Budget of Electrons in the Inner Heliosphere: Parker Solar Probe Observations [J].
Abraham, Joel B. ;
Verscharen, Daniel ;
Wicks, Robert T. ;
Agudelo Rueda, Jeffersson A. ;
Owen, Christopher J. ;
Nicolaou, Georgios ;
Jeong, Seong-Yeop .
ASTROPHYSICAL JOURNAL, 2022, 941 (02)
[3]   Kinetic Turbulence in Collisionless High-? Plasmas [J].
Arzamasskiy, Lev ;
Kunz, Matthew W. ;
Squire, Jonathan ;
Quataert, Eliot ;
Schekochihin, Alexander A. .
PHYSICAL REVIEW X, 2023, 13 (02)
[4]   Hybrid-kinetic Simulations of Ion Heating in Alfvenic Turbulence [J].
Arzamasskiy, Lev ;
Kunz, Matthew W. ;
Chandran, Benjamin D. G. ;
Quataert, Eliot .
ASTROPHYSICAL JOURNAL, 2019, 879 (01)
[5]   Estimates of Proton and Electron Heating Rates Extended to the Near-Sun Environment [J].
Bandyopadhyay, R. ;
Meyer, C. M. ;
Matthaeus, W. H. ;
McComas, D. J. ;
Cranmer, S. R. ;
Halekas, J. S. ;
Huang, J. ;
Larson, D. E. ;
Livi, R. ;
Rahmati, A. ;
Whittlesey, P. L. ;
Stevens, M. L. ;
Kasper, J. C. ;
Bale, S. D. .
ASTROPHYSICAL JOURNAL LETTERS, 2023, 955 (02)
[6]  
Bowen TA, 2023, Arxiv, DOI arXiv:2306.04881
[7]   In Situ Signature of Cyclotron Resonant Heating in the Solar Wind [J].
Bowen, Trevor A. ;
Chandran, Benjamin D. G. ;
Squire, Jonathan ;
Bale, Stuart D. ;
Duan, Die ;
Klein, Kristopher G. ;
Larson, Davin ;
Mallet, Alfred ;
McManus, Michael D. ;
Meyrand, Romain ;
Verniero, Jaye L. ;
Woodham, Lloyd D. .
PHYSICAL REVIEW LETTERS, 2022, 129 (16)
[8]   SPECTRAL SLOPE VARIATION AT PROTON SCALES FROM FAST TO SLOW SOLAR WIND [J].
Bruno, R. ;
Trenchi, L. ;
Telloni, D. .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 793 (01)
[9]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[10]   SOLAR-WIND TEMPERATURE AND SPEED [J].
BURLAGA, LF ;
OGILVIE, KW .
JOURNAL OF GEOPHYSICAL RESEARCH, 1973, 78 (13) :2028-2034