Parity of the 8-regular partition function

被引:1
作者
Cherubini, Giacomo [1 ,2 ]
Mercuri, Pietro [3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
[2] Sapienza Univ Roma, Ist Nazl Alta Matemat Francesco Severi, Dipartimento Matemat Guido Castelnuovo, Res Unit, Piazzale Aldo Moro 5, I-00135 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Sbai, Via A Scarpa 10, I-00161 Rome, Italy
关键词
Congruences; Regular partitions; Dedekind eta-function; Modular forms;
D O I
10.1007/s11139-023-00784-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete characterisation of the parity of b(8)(n), the number of 8-regular partitions of n. Namely, we prove that b(8)(n) is odd precisely when 2(4a+7 )has the form p4(a+1)m(2) with p prime and p <does not divide> m.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 10 条
  • [1] On 3-divisibility of 9-and 27-regular partitions
    Abinash, Sarma
    [J]. RAMANUJAN JOURNAL, 2022, 57 (03) : 1193 - 1207
  • [2] Arithmetic properties of Schur-type overpartitions
    Broudy, Isaac A.
    Lovejoy, Jeremy
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 489 - 505
  • [3] Arithmetic properties of l-regular partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) : 507 - 523
  • [4] a""-Divisibility of a""-regular partition functions
    Dandurand, Brian
    Penniston, David
    [J]. RAMANUJAN JOURNAL, 2009, 19 (01) : 63 - 70
  • [5] Diamond F., 2005, 1 COURSE MODULAR FOR, P436
  • [6] Lovejoy J., 2001, Contemporary Mathematics, V291, P177
  • [7] The 2-adic behavior of the number of partitions into distinct parts
    Ono, K
    Penniston, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (02) : 138 - 157
  • [8] Ribet K.A., 1977, Lecture Notes in Math, V601, P17
  • [9] Serre Jean-Pierre, 1985, Glasgow Math. J., V27, P203, DOI DOI 10.1017/S0017089500006194
  • [10] The LMFDB Collaboration, L FUNCT MOD FORMS DA