Influence and optimization strategy of the magnetic field in 1.5 T MR-linac liver stereotactic radiotherapy

被引:3
作者
Liu, Xin [1 ,2 ]
Yin, Peijun [2 ]
Li, Tengxiang [3 ]
Yin, Yong [1 ,2 ]
Li, Zhenjiang [2 ]
机构
[1] Southwest Med Univ, Dept Oncol, Affiliated Hosp, Luzhou 646000, Peoples R China
[2] Shandong First Med Univ & Shandong Acad Med Sci, Shandong Canc Hosp & Inst, Dept Radiat Phys, Jinan 250117, Peoples R China
[3] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
关键词
Liver cancer; Radiotherapy; MR-LINAC; Magnetic field; Field; IMRT; ACCELERATOR; IMPACT; SCANNER; CANCER;
D O I
10.1186/s13014-023-02356-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectiveTo compare intensity reduction plans for liver cancer with or without a magnetic field and optimize field and subfield numbers in the intensity-modulated radiotherapy (IMRT) plans designed for liver masses in different regions.MethodsThis retrospective study included 62 patients who received radiotherapy for liver cancer at Shandong Cancer Hospital. Based on each patient's original individualized intensity-modulated plan (plan1.5 T), a magnetic field-free plan (plan0 T) and static intensity-modulated plan with four different optimization schemes were redesigned for each patient. The differences in dosimetric parameters among plans were compared.ResultsIn the absence of a magnetic field in the first quadrant, PTV Dmin increased (97.75 +/- 17.55 vs. 100.96 +/- 22.78)%, Dmax decreased (121.48 +/- 29.68 vs. 119.06 +/- 28.52)%, D98 increased (101.35 +/- 7.42 vs. 109.35 +/- 26.52)% and HI decreased (1.14 +/- 0.14 vs. 1.05 +/- 0.01). In the absence of a magnetic field in the second quadrant, PTV Dmin increased (84.33 +/- 19.74 vs. 89.96 +/- 21.23)%, Dmax decreased (105 +/- 25.08 vs. 104.05 +/- 24.86)%, and HI decreased (1.04 +/- 0.25 vs. 0.99 +/- 0.24). In the absence of a magnetic field in the third quadrant, PTV Dmax decreased (110.21 +/- 2.22 vs. 102.31 +/- 26)%, L-P V30 decreased (10.66 +/- 9.19 vs. 5.81 +/- 3.22)%, HI decreased (1.09 +/- 0.02 vs. 0.98 +/- 0.25), and PTV Dmin decreased (92.12 +/- 4.92 vs. 89.1 +/- 22.35)%. In the absence of a magnetic field in the fourth quadrant, PTV Dmin increased (89.78 +/- 6.72 vs. 93.04 +/- 4.86)%, HI decreased (1.09 +/- 0.01 vs. 1.05 +/- 0.01) and D98 increased (99.82 +/- 0.82 vs. 100.54 +/- 0.84)%. These were all significant differences. In designing plans for tumors in each liver region, a total number of subfields in the first area of 60, total subfields in the second zone of 80, and total subfields in the third and fourth zones of 60 or 80 can achieve the dose effect without a magnetic field.ConclusionIn patients with liver cancer, the effect of a magnetic field on the target dose is more significant than that on doses to organs at risk. By controlling the max total number of subfields in different quadrants, the effect of the magnetic field can be greatly reduced or even eliminated.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields [J].
Bol, G. H. ;
Lagendijk, J. J. W. ;
Raaymakers, B. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (02) :755-768
[2]   Intrafraction motion quantification and planning target volume margin determination of head-and-neck tumors using cine magnetic resonance imaging [J].
Bruijnen, Tom ;
Stemkens, Bjorn ;
Terhaard, Chris H. J. ;
Lagendijk, Jan J. W. ;
Raaijmakers, Cornelis P. J. ;
Tijssen, Rob H. N. .
RADIOTHERAPY AND ONCOLOGY, 2019, 130 :82-88
[3]   Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 [J].
Cao, Wei ;
Chen, Hong-Da ;
Yu, Yi-Wen ;
Li, Ni ;
Chen, Wan-Qing .
CHINESE MEDICAL JOURNAL, 2021, 134 (07) :783-791
[4]  
Carlson D, 2001, Med Dosim, V26, P151, DOI 10.1016/S0958-3947(01)00062-0
[5]   Assessing MR-linac radiotherapy robustness for anatomical changes in head and neck cancer [J].
Chuter, Robert W. ;
Pollitt, Andrew ;
Whitehurst, Philip ;
MacKay, Ranald I. ;
van Herk, Marcel ;
McWilliam, Alan .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (12)
[6]   MR-guidance in clinical reality: current treatment challenges and future perspectives [J].
Corradini, S. ;
Alongi, F. ;
Andratschke, N. ;
Belka, C. ;
Boldrini, L. ;
Cellini, F. ;
Debus, J. ;
Guckenberger, M. ;
Hoerner-Rieber, J. ;
Lagerwaard, F. J. ;
Mazzola, R. ;
Palacios, M. A. ;
Philippens, M. E. P. ;
Raaijmakers, C. P. J. ;
Terhaard, C. H. J. ;
Valentini, V. ;
Niyazi, M. .
RADIATION ONCOLOGY, 2019, 14 (1)
[7]   UK 2022 Consensus on Normal Tissue Dose-Volume Constraints for Oligometastatic, Primary Lung and Hepatocellular Carcinoma Stereotactic Ablative Radiotherapy [J].
Diez, P. ;
Hanna, G. G. ;
Aitken, K. L. ;
van As, N. ;
Carver, A. ;
Colaco, R. J. ;
Conibear, J. ;
Dunne, E. M. ;
Eaton, D. J. ;
Franks, K. N. ;
Good, J. S. ;
Harrow, S. ;
Hatfield, P. ;
Hawkins, M. A. ;
Jain, S. ;
McDonald, F. ;
Patel, R. ;
Rackley, T. ;
Sanghera, P. ;
Tree, A. ;
Murray, L. .
CLINICAL ONCOLOGY, 2022, 34 (05) :288-300
[8]   Rectal dose reduction with IMRT for prostate radiotherapy [J].
Hardcastle, N. ;
Davies, A. ;
Foo, K. ;
Miller, A. ;
Metcalfe, P. E. .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2010, 54 (03) :235-248
[9]   Magnetic field induced dose effects in radiation therapy using MR-linacs [J].
Huang, Chen-Yu ;
Yang, Bin ;
Lam, Wai Wang ;
Geng, Hui ;
Cheung, Kin Yin ;
Yu, Siu Ki .
MEDICAL PHYSICS, 2023, 50 (06) :3623-3636
[10]   Magnetic fields with photon beams: Dose calculation using electron multiple-scattering theory [J].
Jette, D .
MEDICAL PHYSICS, 2000, 27 (08) :1705-1716