Mild solutions and controllability of fractional evolution inclusions of Clarke's subdifferential type with nonlocal conditions in Hilbert spaces

被引:3
作者
Hussain, Sadam [1 ]
Sarwar, Muhammad [1 ]
Rahmat, Gul [2 ]
Aydi, Hassen [3 ,4 ,5 ]
De La Sen, Manuel [6 ]
机构
[1] Univ Malakand, Dept Math, Dir Lower, Pakistan
[2] Islamia Coll Peshawar, Dept Math, Peshawar, Pakistan
[3] Univ Sousse, Inst Super Informat & Tech Commun, H Sousse 4000, Tunisia
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Ga Rankuwa, South Africa
[5] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan
[6] Univ Basque Country, Inst Res & Dev Proc, Fac Sci & Technol, Dept Elect & Elect, Campus Leioa, Leioa 48940, Bizkaia, Spain
关键词
Controllability; Clarke's subdifferential type; Fixed point theorem; Nonlocal conditions; EXISTENCE; SYSTEMS;
D O I
10.1016/j.aej.2023.08.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, our aim is to ensure the existence of mild solutions and study the controllability of fractional evolution inclusions of Clarke's subdifferential type of order �� & ISIN; (1, 2) with nonlocal conditions in the setting of Hilbert spaces. Using fixed point techniques, fractional calculus, multivalued maps, cosine and sine function operators, we discuss the existence of mild solutions for the considered system. Moreover, under suitable conditions, we investigate the controllability of the proposed system. Finally, we present an illustrated example.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 46 条
  • [1] Adjimi N., 2021, Malaya J. Mat., V9, DOI [10.26637/mjm1101/006, DOI 10.26637/MJM1101/006]
  • [2] [Anonymous], 1998, Nonsmooth Analysis and Control Theory
  • [3] Ardjouni A., 2021, Malaya J. Mat., V9, DOI [10.26637/mjm904/001, DOI 10.26637/MJM904/001]
  • [4] Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
  • [5] A discussion on controllability of nonlocal fractional semilinear equations of order 1 < r < 2 with monotonic nonlinearity
    Arora, Urvashi
    Vijayakumar, V.
    Shukla, Anurag
    Sajid, Mohammad
    Nisar, Kottakkaran Sooppy
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (08)
  • [6] APPROXIMATE CONTROLLABILITY OF IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL SYSTEMS WITH NONLOCAL CONDITIONS IN HILBERT SPACE
    Balasubramaniam, P.
    Vembarasan, V.
    Senthilkumar, T.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (02) : 177 - 197
  • [7] A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative
    Baleanu, Dumitru
    Jajarmi, Amin
    Mohammadi, Hakimeh
    Rezapour, Shahram
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [8] Banas author=Goebel J., 1980, LECT NOTES PURE APPL, P60
  • [9] Borisovich YG., 2011, Introduction to the Theory of Multivalued Maps and Differential inclusions
  • [10] THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM
    BYSZEWSKI, L
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) : 494 - 505