On Unsupervised Artificial Intelligence-Assisted Design of Antennas for High-Performance Planar Devices

被引:3
|
作者
Koziel, Slawomir [1 ,2 ]
Dou, Weiping [3 ]
Renner, Peter [3 ]
Cohen, Andrew [3 ]
Tian, Yuandong [3 ]
Zhu, Jiang [3 ]
Pietrenko-Dabrowska, Anna [2 ]
机构
[1] Reykjavik Univ, Engn Optimizat & Modeling Ctr, IS-102 Reykjavik, Iceland
[2] Gdansk Univ Technol, Fac Elect Telecommun & Informat, PL-80233 Gdansk, Poland
[3] Meta Platforms Technol LLC, Menlo Pk, CA 94025 USA
关键词
antenna design; unsupervised design; artificial intelligence; design automation; nature-inspired optimization; parameter tuning; TOPOLOGY OPTIMIZATION; GLOBAL OPTIMIZATION; EM OPTIMIZATION; BAND; SENSITIVITY; SEARCH;
D O I
10.3390/electronics12163462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Designing modern antenna structures is a challenging endeavor. It is laborious and heavily reliant on engineering insight and experience, especially at the initial stages oriented towards the development of a suitable antenna architecture. Due to its interactive nature and hands-on procedures (mainly parametric studies) for validating the suitability of particular geometric setups, typical antenna development requires many weeks and significant involvement of a human expert. The same reasons only allow the designer to try out a very limited number of options in terms of antenna geometry arrangements. Automated topology development and dimension sizing is therefore of high interest, especially from an industry perspective where time-to-market and expert-related expenses are of paramount importance. This paper discusses a novel approach to unsupervised specification-driven design of planar antennas. The presented methodology capitalizes on a flexible and scalable antenna parameterization, which enables the realization of complex geometries while maintaining reasonably small parameter space dimensionality. A customized nature-inspired algorithm is employed to carry out space exploration and identification of a quasi-optimum antenna topology in a global sense. A fast gradient-based procedure is then incorporated to fine-tune antenna dimensions. The design framework works entirely in a black-box fashion with the only input being design specifications, and optional constraints, e.g., concerning the structure size. Numerous illustration case studies demonstrate the capability of the presented technique to generate unconventional antenna topologies of satisfactory performance using reasonable computational budgets, and with no human expert interaction necessary whatsoever.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Artificial Intelligence-Assisted Multimode Microrobot Swarm Behaviors
    Xia, Xuanjie
    Ni, Miao
    Wang, Mengchen
    Wang, Bin
    Liu, Dong
    Lu, Yuan
    ACS NANO, 2025, 19 (13) : 12883 - 12894
  • [22] Artificial Intelligence-Assisted Gastroenterology-Promises and Pitfalls
    Ruffle, James K.
    Farmer, Adam D.
    Aziz, Qasim
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2019, 114 (03): : 422 - 428
  • [23] Artificial intelligence-assisted macrophage identification in tumor biopsies
    Weigel, Kelsey
    Paces, Will
    Ergon, Elliott
    Caldara, Jeni
    McFadden, Kile
    Luengo, Cris
    Gianani, Roberto
    Vennapusa, Bharathi
    CANCER RESEARCH, 2019, 79 (13)
  • [24] Artificial Intelligence-Assisted Peer Review in Radiation Oncology
    Cattell, R.
    Ashamalla, M.
    Kim, J.
    Zabrocka, E.
    Qian, X.
    O'Grady, B.
    Butler, S.
    Yoder, T.
    Mani, K. M.
    Ryu, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E471 - E471
  • [25] Ethics of artificial intelligence-assisted image interpretation in dermatopathology
    Smith, Hayden
    Blalock, Travis
    Stoff, Benjamin K.
    JAAD INTERNATIONAL, 2025, 19 : 56 - 57
  • [26] Artificial Intelligence-Assisted Diagnosis for Early Intervention Patients
    Sierra, Ignacio
    Diaz-Diaz, Norberto
    Barranco, Carlos
    Carrasco-Villalon, Rocio
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [27] Artificial Intelligence-Assisted Renal Pathology: Advances and Prospects
    Wang, Yiqin
    Wen, Qiong
    Jin, Luhua
    Chen, Wei
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (16)
  • [28] Recent Advances in Artificial Intelligence-Assisted Ultrasound Scanning
    Tenajas, Rebeca
    Miraut, David
    Illana, Carlos I.
    Alonso-Gonzalez, Rodrigo
    Arias-Valcayo, Fernando
    Herraiz, Joaquin L.
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [29] Artificial intelligence-assisted mindfulness in tourism, hospitality, and events
    Wang, Yao-Chin
    Uysal, Muzaffer
    INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT, 2024, 36 (04) : 1262 - 1278
  • [30] Artificial intelligence-assisted frame rate augmentation in fluoroscopy
    Fong, Ka Man
    Au, Shek Yin
    Lee, Michael Kang Yin
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2022, 23 (01) : E8 - E10