A Comparative Analysis of Machine Learning Models for Predicting Loess Collapse Potential

被引:8
|
作者
Motameni, Sahand [1 ]
Rostami, Fateme [2 ]
Farzai, Sara [3 ]
Soroush, Abbas [2 ]
机构
[1] Univ Arizona, Dept Civil & Architectural Engn & Mech, Tucson, AZ 85721 USA
[2] Amirkabir Univ Technol, Dept Civil & Environm Engn, Tehran, Iran
[3] Islamic Azad Univ, Sari Branch, Young Researchers & Elite Club, Sari, Iran
关键词
Loess; Inundation; Collapse potential; Dataset; Machine learning; Prediction; ENGINEERING PROPERTIES; BEHAVIOR; SOILS; MICROSTRUCTURE; COLLAPSIBILITY; SENSITIVITY; COMPRESSION; PARAMETERS; MECHANISM; EVOLUTION;
D O I
10.1007/s10706-023-02593-4
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Collapsible soils, particularly loessial soils, present significant geotechnical engineering hazards that should be carefully investigated before any construction can commence. However, it is generally difficult to estimate the collapse potential of soils based on the relative contributions of each of the numerous influencing factors. Therefore, the main objective of this study is to find a reliable method for predicting the collapse potential of loessial soils by using machine learning-based tools. In this regard, details of 766 performed oedometer test were gathered from the published literature containing six variables for each data point including dry unit weight of soil, plasticity index, void ratio, degree of saturation, inundation stress at which the oedometer test was conducted, and the collapse potential. Then, prediction for the degree of collapsibility of loess was performed by employing three well-known supervised machine learning tools, namely Multi-Layer Perceptron Neural Network (MLPNN), Radial Basis Function Network (RBFN), and Naive Bayesian Classifier (NBC), and outcomes were analyzed based on a comparative view. Simulation results indicate the superiority of MLPNN in estimating the degree of collapsibility of loess against other models in terms of performance error metrics and precision criterion.
引用
收藏
页码:881 / 894
页数:14
相关论文
共 50 条
  • [21] Comparative analysis of machine learning algorithms for predicting standard time in a manufacturing environment
    Cakit, Erman
    Dagdeviren, Metin
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2023, 37
  • [22] Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows
    Ruchay, Alexey
    Kober, Vitaly
    Dorofeev, Konstantin
    Kolpakov, Vladimir
    Dzhulamanov, Kinispay
    Kalschikov, Vsevolod
    Guo, Hao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [23] Comparative Analysis of Machine Learning Models for Forecasting Infectious Disease Spread
    Damacharla, Praveen
    Gummadi, Venkata Akhil Kumar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 10 - 22
  • [24] Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression Problems
    Sekeroglu, Boran
    Ever, Yoney Kirsal
    Dimililer, Kamil
    Al-Turjman, Fadi
    DATA INTELLIGENCE, 2022, 4 (03) : 620 - 652
  • [25] Machine learning models for predicting endocrine disruption potential of environmental chemicals
    Chierici, Marco
    Giulini, Marco
    Bussola, Nicole
    Jurman, Giuseppe
    Furlanello, Cesare
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2018, 36 (04) : 237 - 251
  • [26] Machine learning for predicting concrete carbonation depth: A comparative analysis and a novel feature selection
    Ehsani, Mehrdad
    Ostovari, Mobin
    Mansouri, Shoaib
    Naseri, Hamed
    Jahanbakhsh, Hamid
    Nejad, Fereidoon Moghadas
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 417
  • [27] Comparative Analysis of Machine Learning in Predicting the Treatment Status of COVID-19 Patients
    Anggrawan, Anthony
    Mayadi
    Satria, Christofer
    Triwijoyo, Bambang Krismono
    Rismayati, Ria
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (01) : 56 - 65
  • [28] Predicting the clothing insulation through machine learning algorithms: A comparative analysis and a practical approach
    Aparicio-Ruiz, Pablo
    Barbadilla-Martin, Elena
    Guadix, Jose
    Munuzuri, Jesus
    BUILDING SIMULATION, 2024, 17 (05) : 839 - 855
  • [29] Comparative studies of machine learning models for predicting higher heating values of biomass
    Adeleke, Adekunle A.
    Adedigba, Adeyinka
    Adeshina, Steve A.
    Ikubanni, Peter P.
    Lawal, Mohammed S.
    Olosho, Adebayo I.
    Yakubu, Halima S.
    Ogedengbe, Temitayo S.
    Nzerem, Petrus
    Okolie, Jude A.
    DIGITAL CHEMICAL ENGINEERING, 2024, 12
  • [30] Cryptocurrency Market Volatility and Forecasting: A Comparative Analysis of Modern Machine Learning Models for Cryptocurrencies Predicting Accuracy
    Iqbal, Robina
    Riaz, Madhia
    Sorwar, Ghulam
    Qadir, Junaid
    REVIEW OF PACIFIC BASIN FINANCIAL MARKETS AND POLICIES, 2024, 27 (04)