Quantum Affine Vertex Algebras Associated to Untwisted Quantum Affinization Algebras

被引:4
作者
Kong, Fei [1 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Peoples R China
关键词
OPERATOR-ALGEBRAS; REPRESENTATIONS; MODULES;
D O I
10.1007/s00220-023-04778-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let U-h((g) over cap) be the untwisted affinization of a symmetrizable quantum Kac-Moody algebra U-h((g) over cap). For l ? C, we construct an h-adic quantum vertex algebra V-(g) over cap ,V-h (l, 0), and establish a one-to-one correspondence between 0-coordinated V-(g) over cap ,V-h(l, 0)- modules and restricted U-h((g) over cap)-modules of level l. Suppose that l is a positive integer. We construct a quotient h-adic quantum vertex algebra L-(g) over cap ,L-h (l, 0) of V-(g) over cap ,V-h(l, 0), and es-tablish a one-to-one correspondence between certain 0-coordinated L-(g) over cap ,L-h (l, 0)-modules and restricted integrable U-h((g) over cap)-modules of level l. Suppose further that g is of finite type. We prove that L-(g) over cap ,L-h(l, 0)/hL((g) over cap ,h)(l, 0) is isomorphic to the simple affine vertex algebra L-(g) over cap(l, 0).
引用
收藏
页码:2577 / 2625
页数:49
相关论文
共 44 条
[1]   h-Adic quantum vertex algebras associated with rational R-matrix in types B, C and D [J].
Butorac, Marijana ;
Jing, Naihuan ;
Kozic, Slaven .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (11) :2439-2471
[2]   TWISTED QUANTUM AFFINIZATIONS AND QUANTIZATION OF EXTENDED AFFINE LIE ALGEBRAS [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) :969-1039
[3]   ISOMORPHISM OF 2 REALIZATIONS OF QUANTUM AFFINE ALGEBRA UQ(GL(N))OVER-CAP [J].
DING, J ;
FRENKEL, IB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) :277-300
[4]   Quantum current operators .1. Zeros and poles of quantum current operators and the condition of quantum integrability [J].
Ding, JT ;
Miwa, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (02) :277-284
[5]  
Dong C., 2002, Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, Proceedings of an International Conference at University of Virginia, May 2000, Contemporary Math, V297, P69, DOI DOI 10.1090/CONM/297/05093
[6]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166
[7]  
Dong DL93 C., 1993, PROG MATH, V112
[8]  
Drinfeld V.G., 1988, SOVIET MATH DOKL, V36, P212
[9]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR+, V283, P1060
[10]  
Etingof Pavel., 2000, Selecta Math. (N.S.), V6, P105