Longitudinal Characterization of the Gut Microbiota in the Diabetic ZDSD Rat Model and Therapeutic Potential of Oligofructose

被引:7
作者
Weninger, Savanna N. N. [1 ]
Ding, Angela [1 ]
Browne, Elizabeth N. N. [2 ]
Frost, Morgan L. [3 ]
Schiro, Gabriele [4 ]
Laubitz, Daniel [4 ]
Duca, Frank A. A. [3 ,5 ]
机构
[1] Univ Arizona, Dept Physiol Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA
[3] Univ Arizona, Coll Agr & Life Sci, Sch Anim & Comparat Biomed Sci, Tucson, AZ 85721 USA
[4] Univ Arizona, Dept Pediat, PANDA Core Genom & Microbiome Res, Tucson, AZ 85721 USA
[5] Univ Arizona, Inst BIO5, Tucson, AZ 85721 USA
基金
美国食品与农业研究所;
关键词
diabetes; prediabetes; microbiome; oligofructose; HIGH-FAT-DIET; GLUCOSE-TOLERANCE; OBESITY; PREBIOTICS; BUTYRATE; MICE; HYPERGLYCEMIA; INFLAMMATION; INVOLVEMENT; IMPROVEMENT;
D O I
10.3390/metabo13050660
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The complex development of type 2 diabetes (T2D) creates challenges for studying the progression and treatment of the disease in animal models. A newly developed rat model of diabetes, the Zucker Diabetic Sprague Dawley (ZDSD) rat, closely parallels the progression of T2D in humans. Here, we examine the progression of T2D and associated changes in the gut microbiota in male ZDSD rats and test whether the model can be used to examine the efficacy of potential therapeutics such as prebiotics, specifically oligofructose, that target the gut microbiota. Bodyweight, adiposity, and fed/fasting blood glucose and insulin were recorded over the course of the study. Glucose and insulin tolerance tests were performed, and feces collected at 8, 16, and 24 weeks of age for short-chain fatty acids and microbiota analysis using 16s rRNA gene sequencing. At the end of 24 weeks of age, half of the rats were supplemented with 10% oligofructose and tests were repeated. We observed a transition from healthy/nondiabetic to prediabetic and overtly diabetic states, via worsened insulin and glucose tolerance and significant increases in fed/fasted glucose, followed by a significant decrease in circulating insulin. Acetate and propionate levels were significantly increased in the overt diabetic state compared to healthy and prediabetic. Microbiota analysis demonstrated alterations in the gut microbiota with shifts in alpha and beta diversity as well as alterations in specific bacterial genera in healthy compared to prediabetic and diabetic states. Oligofructose treatment improved glucose tolerance and shifted the cecal microbiota of the ZDSD rats during late-stage diabetes. These findings underscore the translational potential of ZDSD rats as a model of T2D and highlight potential gut bacteria that could impact the development of the disease or serve as a biomarker for T2D. Additionally, oligofructose treatment was able to moderately improve glucose homeostasis.
引用
收藏
页数:17
相关论文
共 74 条
[1]   ACETATE TOLERANCE AND THE KINETICS OF ACETATE UTILIZATION IN DIABETIC AND NONDIABETIC SUBJECTS [J].
AKANJI, AO ;
HOCKADAY, TDR .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 1990, 51 (01) :112-118
[2]   Aberrant intestinal microbiota in individuals with prediabetes [J].
Allin, Kristine H. ;
Tremaroli, Valentina ;
Caesar, Robert ;
Jensen, Benjamin A. H. ;
Damgaard, Mads T. F. ;
Bahl, Martin I. ;
Licht, Tine R. ;
Hansen, Tue H. ;
Nielsen, Trine ;
Dantoft, Thomas M. ;
Linneberg, Allan ;
Jorgensen, Torben ;
Vestergaard, Henrik ;
Kristiansen, Karsten ;
Franks, Paul W. ;
Hansen, Torben ;
Backhed, Fredrik ;
Pedersen, Oluf .
DIABETOLOGIA, 2018, 61 (04) :810-820
[3]   Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and Metabolic Syndrome [J].
Atzeni, Alessandro ;
Galie, Serena ;
Muralidharan, Jananee ;
Babio, Nancy ;
Tinahones, Francisco Jose ;
Vioque, Jesus ;
Corella, Dolores ;
Castaner, Olga ;
Vidal, Josep ;
Moreno-Indias, Isabel ;
Torres-Collado, Laura ;
Fernandez-Carrion, Rebeca ;
Fito, Montserrat ;
Olbeyra, Romina ;
Martinez-Gonzalez, Miguel Angel ;
Bullo, Monica ;
Salas-Salvado, Jordi .
MICROORGANISMS, 2021, 9 (02) :1-13
[4]   Targeting the gastrointestinal tract to treat type 2 diabetes [J].
Bauer, Paige V. ;
Duca, Frank A. .
JOURNAL OF ENDOCRINOLOGY, 2016, 230 (03) :R95-R113
[5]   Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut [J].
Belenguer, Alvaro ;
Duncan, Sylvia H. ;
Calder, A. Graham ;
Holtrop, Grietje ;
Louis, Petra ;
Lobley, Gerald E. ;
Flint, Harry J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) :3593-3599
[6]   Combined Effects of Oligofructose and Bifidobacterium animalis on Gut Microbiota and Glycemia in Obese Rats [J].
Bomhof, Marc R. ;
Saha, Dolan C. ;
Reid, Danielle T. ;
Paul, Heather A. ;
Reimer, Raylene A. .
OBESITY, 2014, 22 (03) :763-771
[7]   Gut microbial metabolites in obesity, NAFLD and T2DM [J].
Canfora, Emanuel E. ;
Meex, Ruth C. R. ;
Venema, Koen ;
Blaak, Ellen E. .
NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (05) :261-273
[8]   Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J].
Cani, P. D. ;
Neyrinck, A. M. ;
Fava, F. ;
Knauf, C. ;
Burcelin, R. G. ;
Tuohy, K. M. ;
Gibson, G. R. ;
Delzenne, N. M. .
DIABETOLOGIA, 2007, 50 (11) :2374-2383
[9]   Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability [J].
Cani, P. D. ;
Possemiers, S. ;
Van de Wiele, T. ;
Guiot, Y. ;
Everard, A. ;
Rottier, O. ;
Geurts, L. ;
Naslain, D. ;
Neyrinck, A. ;
Lambert, D. M. ;
Muccioli, G. G. ;
Delzenne, N. M. .
GUT, 2009, 58 (08) :1091-1103
[10]   Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J].
Cani, Patrice D. ;
Bibiloni, Rodrigo ;
Knauf, Claude ;
Neyrinck, Audrey M. ;
Neyrinck, Audrey M. ;
Delzenne, Nathalle M. ;
Burcelin, Remy .
DIABETES, 2008, 57 (06) :1470-1481