共 57 条
Improving the rate capability of microporous activated carbon-based supercapacitor electrodes using non-porous graphene oxide
被引:4
作者:
Inal, I. Isil Gurten
[1
]
Koyuncu, Filiz
[2
]
Perez-Page, Maria
[3
]
机构:
[1] Ankara Univ, Fac Engn, Dept Chem Engn, TR-06100 Ankara, Turkiye
[2] Dicle Univ, Inst Nat & Appl Sci, Dept Chem, TR-21280 Diyarbakir, Turkiye
[3] Univ Manchester, Sch Chem Engn & Analyt Sci, Sackville St, Manchester M13 9PL, England
关键词:
Activated carbon;
Microporosity;
Graphene oxide;
Rate capability;
Supercapacitor;
OXYGEN FUNCTIONAL-GROUPS;
SURFACE-AREA;
ELECTROCHEMICAL PERFORMANCES;
PORE-SIZE;
CAPACITANCE;
COMPOSITE;
EDLC;
D O I:
10.1007/s10934-023-01459-7
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
In this work, high-rate-capability supercapacitor electrodes based on a green, sustainable, graphene oxide-assisted microporous activated carbon (AC) were developed by a facile method. Highly microporous ACs were produced from tea factory waste using different amounts of potassium carbonate (K2CO3). Non-porous GO sheets were prepared by anodic electrochemical exfoliation in a 0.1 M (NH4)(2)SO4 aqueous solution. The materials were characterized by N-2 adsorption-desorption, particle size, XPS, Raman, and SEM techniques. The electrochemical performance of ACs was examined by using a 6 M KOH electrolyte with CV, GCD, and EIS methods. It was determined that the activated carbon sample (AC-IR1.5), prepared using a mass ratio of (1.0:1.5) of tea factory waste: K2CO3, exhibited the best electrode performance. These highly reversible best-performing AC-based electrodes prepared from AC-IR1.5 with the highest micropore volume fraction were physically mixed with GO in mass ratios, (AC-IR1.5: GO) of 90:10, 75:25, 60:40, and examined as the supercapacitor electrodes along with AC-based electrodes. The electrochemical characterization results showed that a significant enhancement in the rate capability was achieved by AC-IR1.5: GO electrodes compared to AC-based ones. The capacitance retention of AC-IR1.5: GO (75:25) was found to be at least twice as higher (84%) than that of AC-based electrodes (39%) at a high current density of 10 A g(- 1).
引用
收藏
页码:1775 / 1787
页数:13
相关论文