On Uniqueness of Multi-bubble Blow-Up Solutions and Multi-solitons to L2-Critical Nonlinear Schrodinger Equations
被引:0
|
作者:
Cao, Daomin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Cao, Daomin
[1
,2
]
Su, Yiming
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ Technol, Dept Math, Zhejiang 310014, Peoples R ChinaChinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Su, Yiming
[3
]
Zhang, Deng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R ChinaChinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
Zhang, Deng
[4
]
机构:
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang Univ Technol, Dept Math, Zhejiang 310014, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
We are concerned with the focusing L-2-critical nonlinear Schrodinger equations in R-d for dimensions d = 1, 2. The uniqueness is proved for a large energy class of multi-bubble blow-up solutions, which converge to a sum of K pseudo-conformal blow-up solutions particularly with the low rate (T -t)(0+), as t -> T, 1 <= K < infinity. Moreover, we also prove the uniqueness in the energy class of multi-solitons which converge to a sum of K solitary waves with convergence rate (1/t)(2+), as t -> infinity. The uniqueness class is further enlarged to contain the multi-solitons with even lower convergence rate (1/t)(1/2+) in the pseudo-conformal space. Our proof is mainly based on several upgrading procedures of the convergence of remainder in the geometrical decomposition, in which the key ingredients are several monotone functionals constructed particularly in the multi-bubble case.
机构:Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
Pang, PYH
Tang, HY
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
Tang, HY
Wang, YD
论文数: 0引用数: 0
h-index: 0
机构:Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
机构:
Seoul Natl Univ, Dept Math Sci, 1 Gwanak Ro, Seoul 151747, South Korea
Korea Inst Adv Study, Sch Math, Hoegiro 85, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, 1 Gwanak Ro, Seoul 151747, South Korea
Choi, Woocheol
Kim, Seunghyeok
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, ChileSeoul Natl Univ, Dept Math Sci, 1 Gwanak Ro, Seoul 151747, South Korea
Kim, Seunghyeok
Lee, Ki-Ahm
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, 1 Gwanak Ro, Seoul 151747, South Korea
Korea Inst Adv Study, Ctr Math Challenges, Seoul 130722, South KoreaSeoul Natl Univ, Dept Math Sci, 1 Gwanak Ro, Seoul 151747, South Korea
机构:
Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku ku, Tokyo 1628601, Japan