Dynamical low-rank approximations of solutions to the Hamilton-Jacobi-Bellman equation

被引:4
作者
Eigel, Martin [1 ]
Schneider, Reinhold [2 ]
Sommer, David [1 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Berlin, Germany
[2] Tech Univ Berlin, Dept Math, Berlin, Germany
关键词
dynamical low-rank approximation; feedback control; Hamilton-Jacobi-Bellman; tensor product approximation; variational Monte Carlo; ITERATION; TENSORS;
D O I
10.1002/nla.2463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel method to approximate optimal feedback laws for nonlinear optimal control based on low-rank tensor train (TT) decompositions. The approach is based on the Dirac-Frenkel variational principle with the modification that the optimization uses an empirical risk. Compared to current state-of-the-art TT methods, our approach exhibits a greatly reduced computational burden while achieving comparable results. A rigorous description of the numerical scheme and demonstrations of its performance are provided.
引用
收藏
页数:20
相关论文
共 55 条
[1]  
AKIAN M., 2018, SPRINGER INDAM SER, P183
[2]   The max-plus finite element method for solving deterministic optimal control problems: Basic properties and convergence analysis [J].
Akian, Marianne ;
Gaubert, Stephane ;
Lakhoua, Asma .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) :817-848
[3]   A HJB-POD approach for the control of nonlinear PDEs on atree structure [J].
Alla, Alessandro ;
Saluzzi, Luca .
APPLIED NUMERICAL MATHEMATICS, 2020, 155 :192-207
[4]  
Azmi B, 2021, J MACH LEARN RES, V22
[5]   EXISTENCE OF DYNAMICAL LOW-RANK APPROXIMATIONS TO PARABOLIC PROBLEMS [J].
Bachmayr, Markus ;
Eisenmann, Henrik ;
Kieri, Emil ;
Uschmajew, Andre .
MATHEMATICS OF COMPUTATION, 2021, 90 (330) :1799-1830
[6]   Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations [J].
Bachmayr, Markus ;
Schneider, Reinhold ;
Uschmajew, Andre .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (06) :1423-1472
[7]  
Bardi Martino., 2008, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[8]  
Bayer Christian., 2021, ARXIV
[9]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[10]  
Bertsekas DimitriP., 2017, DYNAMIC PROGRAMMING, V1