Linearization and computation for large-strain visco-elasticity

被引:0
作者
Dondl, Patrick [1 ]
Jesenko, Martin [2 ]
Kruzik, Martin [3 ,4 ]
Valdman, Jan [3 ,5 ]
机构
[1] Univ Freiburg, Dept Appl Math, Freiburg, Germany
[2] Univ Ljubljana, Fac Civil & Geodet Engn, Ljubljana, Slovenia
[3] Czech Acad Sci, Inst Informat Theory & Automat, Prague 8, Czech Republic
[4] Czech Tech Univ, Fac Civil Engn, Thakurova 7, CZ-16629 Prague 6, Czech Republic
[5] Univ South Bohemia, Fac Sci, Dept Math, Ceske Budejovice, Czech Republic
来源
MATHEMATICS IN ENGINEERING | 2023年 / 5卷 / 02期
关键词
Kelvin-Voigt rheology; visco-elasticity; numerical scheme; ELASTICITY;
D O I
10.3934/mine.2023030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time-discrete numerical minimization schemes for simple visco-elastic materials in the Kelvin-Voigt rheology at high strains are not well posed because of the non-quasi-convexity of the dissipation functional. A possible solution is to resort to non-simple material models with higherorder gradients of deformations. However, this makes numerical computations much more involved. Here, we propose another approach that relies on local minimizers of the simple material model. Computational tests are provided that show a very good agreement between our model and the original.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 14 条
  • [1] Antman S.S., 2004, Nonlinear Problems of Elasticity, volume 107 of Applied Mathematical Sciences, V107, DOI [DOI 10.1007/0-387-27649-1, 10.1007/0-387-27649-1]
  • [2] Physically unacceptable viscous stresses
    Antman, SS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (06): : 980 - 988
  • [3] Quasistatic Nonlinear Viscoelasticity and Gradient Flows
    Ball, J. M.
    Sengul, Y.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2015, 27 (3-4) : 405 - 442
  • [4] Bogner FK, 1965, MATRIX METHODS STRUC, P397
  • [5] Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate
    Chen, Yanqing
    Davis, Timothy A.
    Hager, William W.
    Rajamanickam, Sivasankaran
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03):
  • [6] Dacorogna B, 2008, DIRECT METHODS CALCU, P2
  • [7] Dal Maso G, 2002, SET-VALUED ANAL, V10, P165
  • [8] NUMERICAL APPROXIMATION OF VON KARMAN VISCOELASTIC PLATES
    Friedrich, Manuel
    Kruzik, Martin
    Valdman, Jan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01): : 299 - 319
  • [9] ON THE PASSAGE FROM NONLINEAR TO LINEARIZED VISCOELASTICITY
    Friedrich, Manuel
    Kruzik, Martin
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 4426 - 4456
  • [10] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence
    Friesecke, G
    James, RD
    Müller, S
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (02) : 183 - 236