Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries

被引:71
|
作者
Chen, Fuping [1 ]
Di, Yujie [1 ]
Su, Qiong [2 ]
Xu, Dongming [1 ]
Zhang, Yangpu [1 ]
Zhou, Shuang [1 ]
Liang, Shuquan [1 ,3 ]
Cao, Xinxin [1 ,3 ]
Pan, Anqiang [1 ,3 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Hunan First Normal Univ, Sch Phys & Chem, Changsha, Hunan, Peoples R China
[3] Cent South Univ, Key Lab Elect Packaging & Adv Funct Mat Hunan Pro, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
anode materials; hard carbon; sodium-ion batteries; stable interface; vanadium carbide; SOLID-ELECTROLYTE INTERPHASE; DOPED CARBON; ENERGY-STORAGE; INSERTION; CATHODE; LITHIUM; MICROSPHERES;
D O I
10.1002/cey2.191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbons are promising anode materials for sodium-ion batteries. To meet practical requirements, searching for durable and conductive carbon with a stable interface is of great importance. Here, we prepare a series of vanadium-modified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis. Significantly, the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds, thus optimizing the reaction kinetic. Meanwhile, the optimized hard carbon spheres modified by vanadium carbide, with sufficient pseudographitic domains, provide more active sites for Na ion migration and storage. As a result, the HC/VC-1300 electrode exhibits excellent Na storage performance, including a high capacity of 420 mAh g(-1) at 50 mA g(-1) and good rate capability at 1 A g(-1). This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [32] Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Jiao, Lifang
    Tao, Zhanliang
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (02) : 214 - 220
  • [33] Hard carbon spheres prepared by a modified Stober method as anode material for high-performance potassium-ion batteries
    Fan, Chenyang
    Ou, Mingyang
    Wei, Peng
    Xu, Jia
    Sun, Shixiong
    Liu, Yi
    Xu, Yue
    Fang, Chun
    Li, Qing
    Han, Jiantao
    RSC ADVANCES, 2021, 11 (24) : 14883 - 14890
  • [34] Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries
    Gaddam, Rohit Ranganathan
    Jiang, Edward
    Amiralian, Nasim
    Annamalai, Pratheep K.
    Martin, Darren J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (05): : 1090 - 1097
  • [35] Sucrose-derived hard carbon wrapped with reduced graphene oxide as a high-performance anode for sodium-ion batteries
    Li, Shengyuan
    Yuan, Hong
    Ye, Chuanren
    Wang, Yizhe
    Wang, Long
    Ni, Kun
    Zhu, Yanwu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (18) : 9816 - 9823
  • [36] Discarded sulfuric acid paper-derived hard carbon as high-performance anode material for sodium-ion batteries
    Duan, Rui
    Zhang, Xi
    Zheng, Tiejun
    Wang, Yuzuo
    Yu, Xuewen
    Ruan, Dianbo
    Qiao, Zhijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [37] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [38] Nanowire of WP as a High-Performance Anode Material for Sodium-Ion Batteries
    Pan, Qi
    Chen, Hui
    Wu, Zhenguo
    Wang, Yuan
    Zhong, Benhe
    Xia, Li
    Wang, Hai-Ying
    Cui, Guanwei
    Guo, Xiaodong
    Sun, Xuping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (04) : 971 - 975
  • [39] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331
  • [40] Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries
    He, Jiarong
    Fu, Yuling
    Xie, Zhangyating
    Xia, Zhiyong
    Chen, Yili
    Deng, Yingkang
    Guo, Jinyan
    Lin, Jizheng
    Kuai, Yutong
    Li, Weishan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 515 - 525