Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries

被引:71
|
作者
Chen, Fuping [1 ]
Di, Yujie [1 ]
Su, Qiong [2 ]
Xu, Dongming [1 ]
Zhang, Yangpu [1 ]
Zhou, Shuang [1 ]
Liang, Shuquan [1 ,3 ]
Cao, Xinxin [1 ,3 ]
Pan, Anqiang [1 ,3 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Hunan First Normal Univ, Sch Phys & Chem, Changsha, Hunan, Peoples R China
[3] Cent South Univ, Key Lab Elect Packaging & Adv Funct Mat Hunan Pro, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
anode materials; hard carbon; sodium-ion batteries; stable interface; vanadium carbide; SOLID-ELECTROLYTE INTERPHASE; DOPED CARBON; ENERGY-STORAGE; INSERTION; CATHODE; LITHIUM; MICROSPHERES;
D O I
10.1002/cey2.191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbons are promising anode materials for sodium-ion batteries. To meet practical requirements, searching for durable and conductive carbon with a stable interface is of great importance. Here, we prepare a series of vanadium-modified hard carbon submicrospheres by using hydrothermal carbonization followed by high-temperature pyrolysis. Significantly, the introduction of vanadium can facilitate the nucleation and uniform growth of carbon spheres and generate abundant V-O-C interface bonds, thus optimizing the reaction kinetic. Meanwhile, the optimized hard carbon spheres modified by vanadium carbide, with sufficient pseudographitic domains, provide more active sites for Na ion migration and storage. As a result, the HC/VC-1300 electrode exhibits excellent Na storage performance, including a high capacity of 420 mAh g(-1) at 50 mA g(-1) and good rate capability at 1 A g(-1). This study proposes a new strategy for the synthesis of hard carbon spheres with high tap density and emphasizes the key role of pseudographitic structure for Na storage and interface stabilization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries
    Fuping Chen
    Yujie Di
    Qiong Su
    Dongming Xu
    Yangpu Zhang
    Shuang Zhou
    Shuquan Liang
    Xinxin Cao
    Anqiang Pan
    Carbon Energy, 2023, 5 (02) : 6 - 17
  • [2] Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    CHEMSUSCHEM, 2015, 8 (17) : 2877 - 2882
  • [3] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9
  • [4] Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries
    Wang, Jiaxu
    Li, Fangyu
    Duan, Yuansen
    Tao, Huachao
    Yang, Xuelin
    IONICS, 2023, 29 (06) : 2311 - 2318
  • [5] Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries
    Jiaxu Wang
    Fangyu Li
    Yuansen Duan
    Huachao Tao
    Xuelin Yang
    Ionics, 2023, 29 : 2311 - 2318
  • [6] Manipulating micropore structure of hard carbon as high-performance anode for Sodium-Ion Batteries
    Pan, Yihao
    Ji, Bingyang
    Wang, Lexin
    Sun, Yiran
    Li, Longchen
    Wu, Xiaozhong
    Zhou, Pengfei
    ELECTROCHIMICA ACTA, 2024, 506
  • [7] Optimization of tannin-derived hard carbon spheres for high-performance sodium-ion batteries
    Beda, Adrian
    Rabuel, Francois
    Rahmouni, Omar
    Morcrette, Mathieu
    Ghimbeu, Camelia Matei
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) : 4365 - 4383
  • [8] A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries
    Liu, Pin
    Li, Yunming
    Hu, Yong-Sheng
    Li, Hong
    Chen, Liquan
    Huang, Xuejie
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13046 - 13052
  • [9] Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries
    Xiaoming Zhu
    Qian Li
    Shen Qiu
    Xiaoling Liu
    Lifen Xiao
    Xinping Ai
    Hanxi Yang
    Yuliang Cao
    JOM, 2016, 68 : 2579 - 2584
  • [10] Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries
    Wang, Kun
    Jin, Yu
    Sun, Shixiong
    Huang, Yangyang
    Peng, Jian
    Luo, Jiahuan
    Zhang, Qin
    Qiu, Yuegang
    Fang, Chun
    Han, Jiantao
    ACS OMEGA, 2017, 2 (04): : 1687 - 1695