A SIMPLE NONPARAMETRIC APPROACH FOR ESTIMATION AND INFERENCE OF CONDITIONAL QUANTILE FUNCTIONS

被引:3
|
作者
Fang, Zheng [1 ]
Li, Qi [1 ]
Yan, Karen X. [2 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
EMPIRICAL PROCESSES; REGRESSION; BOOTSTRAP; CONSISTENCY; CURVES;
D O I
10.1017/S0266466621000499
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we present a new nonparametric method for estimating a conditional quantile function and develop its weak convergence theory. The proposed estimator is computationally easy to implement and automatically ensures quantile monotonicity by construction. For inference, we propose to use a residual bootstrap method. Our Monte Carlo simulations show that this new estimator compares well with the check-function-based estimator in terms of estimation mean squared error. The bootstrap confidence bands yield adequate coverage probabilities. An empirical example uses a dataset of Canadian high school graduate earnings, illustrating the usefulness of the proposed method in applications.
引用
收藏
页码:290 / 320
页数:31
相关论文
共 50 条
  • [41] Order-preserving nonparametric regression, with applications to conditional distribution and quantile function estimation
    Hall, P
    Müller, HG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) : 598 - 608
  • [42] Nonparametric quantile inference with competing - risks data
    Peng, L.
    Fine, J. P.
    BIOMETRIKA, 2007, 94 (03) : 735 - 744
  • [43] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [44] Nonparametric inference for quantile cointegrations with stationary covariates
    Tu, Yundong
    Liang, Han-Ying
    Wang, Qiying
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 453 - 482
  • [45] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [46] NONPARAMETRIC CONDITIONAL INFERENCE FOR A LOCATION PARAMETER
    SEVERINI, TA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1994, 56 (02): : 353 - 362
  • [47] Nonparametric Bayes inference on conditional independence
    Kunihama, Tsuyoshi
    Dunson, David B.
    BIOMETRIKA, 2016, 103 (01) : 35 - 47
  • [48] Bayesian inference in quantile functions
    Nair, N. Unnikrishnan
    Sankaran, P. G.
    Dileepkumar, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (14) : 4877 - 4889
  • [49] QUANTILE REGRESSION - A NONPARAMETRIC APPROACH
    LEJEUNE, MG
    SARDA, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 6 (03) : 229 - 239
  • [50] Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models
    Ai, Chunrong
    Linton, Oliver
    Zhang, Zheng
    JOURNAL OF ECONOMETRICS, 2022, 228 (01) : 39 - 61