Controlled catalyst-transfer polymerization in graphene nanoribbon synthesis

被引:3
作者
Pun, Sai Ho [1 ]
Delgado, Aidan [1 ]
Dadich, Christina [1 ]
Cronin, Adam [1 ]
Fischer, Felix Raoul [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Bakar Inst Digital Mat Planet, Div Comp Data Sci & Soc, Berkeley, CA 94720 USA
来源
CHEM | 2024年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
CROSS-COUPLING POLYMERIZATION; AB-TYPE MONOMERS; ON-SURFACE SYNTHESIS; BOTTOM-UP SYNTHESIS; CONJUGATED POLYMERS; PRECISION SYNTHESIS; GROWTH;
D O I
10.1016/j.chempr.2023.11.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exercising direct control over the unusual electronic structures arising from quantum confinement effects in graphene nanoribbons (GNRs) is intimately linked to geometric boundary conditions imposed by the structure of the ribbon. Besides composition and position of substitutional dopant atoms, the symmetry of the unit cell, width, length, and termination of a GNR govern its electronic structure. Here, we present a rational design that integrates each of these interdependent variables within a modular bottom -up synthesis. Our hybrid chemical approach relies on a catalyst -transfer polymerization that establishes excellent control over length, width, and end groups. Complemented by a surface -assisted cyclodehydrogenation step, uniquely enabled by matrix -assisted direct (MAD) transfer protocols, geometry and functional handles encoded in a polymer template are faithfully mapped onto the structure of the corresponding GNR. Bond -resolved scanning tunneling microscopy (BRSTM) and spectroscopy (STS) validate the robust correlation between polymer template design and GNR electronic structure.
引用
收藏
页码:675 / 685
页数:12
相关论文
共 50 条
[41]   On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure [J].
Keerthi, Ashok ;
Sanchez-Sanchez, Carlos ;
Deniz, Okan ;
Ruffieux, Pascal ;
Schollmeyer, Dieter ;
Feng, Xinliang ;
Narita, Akimitsu ;
Fasel, Roman ;
Muellen, Klaus .
CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (22) :3807-3811
[42]   Mechanistic Investigation of Catalyst-Transfer Suzuki-Miyaura Condensation Polymerization of Thiophene-Pyridine Biaryl Monomers with the Aid of Model Reactions [J].
Tokita, Yu ;
Katoh, Masaru ;
Ohta, Yoshihiro ;
Yokozawa, Tsutomu .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (48) :17436-17444
[43]   Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene) [J].
Qiu, Yunyan ;
Mohin, Jacob ;
Tsai, Chia-Hua ;
Tristram-Nagle, Stephanie ;
Gil, Roberto R. ;
Kowalewski, Tomasz ;
Noonan, Kevin J. T. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (09) :840-844
[44]   Chain-growth polymerization enables the controlled synthesis of graphene nanoribbons [J].
Ma, Ji ;
Feng, Xinliang .
CHEM, 2024, 10 (02) :435-437
[45]   Synthesis of regioblock copolythiophene by Negishi catalyst-transfer polycondensation using tBu2Zn•2LiCl [J].
Goto, Eisuke ;
Ochiai, Yuto ;
Lo, Chen-Tsyr ;
Koganezawa, Tomoyuki ;
Ueda, Mitsuru ;
Higashihara, Tomoya .
POLYMER CHEMISTRY, 2017, 8 (39) :6143-6149
[46]   Precision synthesis of a fluorene-thiophene alternating copolymer by means of the Suzuki-Miyaura catalyst-transfer condensation polymerization: the importance of the position of an alkyl substituent on thiophene of the biaryl monomer to suppress disproportionation [J].
Tokita, Yu ;
Katoh, Masaru ;
Kosaka, Kentaro ;
Ohta, Yoshihiro ;
Yokozawa, Tsutomu .
POLYMER CHEMISTRY, 2021, 12 (48) :7065-7072
[47]   Nanographene and Graphene Nanoribbon Synthesis via Alkyne Benzannulations [J].
Senese, Amber D. ;
Chalifoux, Wesley A. .
MOLECULES, 2019, 24 (01)
[48]   A versatile platform for graphene nanoribbon synthesis, electronic decoupling, and spin polarized measurements [J].
Cahlik, Ales ;
Liu, Danyang ;
Zengin, Berk ;
Taskin, Mert ;
Schwenk, Johannes ;
Natterer, Fabian Donat .
NANOSCALE ADVANCES, 2023, 5 (06) :1722-1728
[49]   On-Surface Synthesis of a Nitrogen-Doped Graphene Nanoribbon with Multiple Substitutional Sites [J].
Zhang, Yong ;
Lu, Jianchen ;
Li, Yang ;
Li, Baijin ;
Ruan, Zilin ;
Zhang, Hui ;
Hao, Zhenliang ;
Sun, Shijie ;
Xiong, Wei ;
Gao, Lei ;
Chen, Long ;
Cai, Jinming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (28)
[50]   Synthesis of very narrow multilayer graphene nanoribbon with turbostratic stacking [J].
Negishi, R. ;
Yamamoto, K. ;
Kitakawa, H. ;
Fukumori, M. ;
Tanaka, H. ;
Ogawa, T. ;
Kobayashi, Y. .
APPLIED PHYSICS LETTERS, 2017, 110 (20)