共 50 条
Controlled catalyst-transfer polymerization in graphene nanoribbon synthesis
被引:3
|作者:
Pun, Sai Ho
[1
]
Delgado, Aidan
[1
]
Dadich, Christina
[1
]
Cronin, Adam
[1
]
Fischer, Felix Raoul
[1
,2
,3
,4
]
机构:
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Bakar Inst Digital Mat Planet, Div Comp Data Sci & Soc, Berkeley, CA 94720 USA
来源:
CHEM
|
2024年
/
10卷
/
02期
基金:
美国国家科学基金会;
关键词:
CROSS-COUPLING POLYMERIZATION;
AB-TYPE MONOMERS;
ON-SURFACE SYNTHESIS;
BOTTOM-UP SYNTHESIS;
CONJUGATED POLYMERS;
PRECISION SYNTHESIS;
GROWTH;
D O I:
10.1016/j.chempr.2023.11.002
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Exercising direct control over the unusual electronic structures arising from quantum confinement effects in graphene nanoribbons (GNRs) is intimately linked to geometric boundary conditions imposed by the structure of the ribbon. Besides composition and position of substitutional dopant atoms, the symmetry of the unit cell, width, length, and termination of a GNR govern its electronic structure. Here, we present a rational design that integrates each of these interdependent variables within a modular bottom -up synthesis. Our hybrid chemical approach relies on a catalyst -transfer polymerization that establishes excellent control over length, width, and end groups. Complemented by a surface -assisted cyclodehydrogenation step, uniquely enabled by matrix -assisted direct (MAD) transfer protocols, geometry and functional handles encoded in a polymer template are faithfully mapped onto the structure of the corresponding GNR. Bond -resolved scanning tunneling microscopy (BRSTM) and spectroscopy (STS) validate the robust correlation between polymer template design and GNR electronic structure.
引用
收藏
页码:675 / 685
页数:12
相关论文