A Machine Learning Method for Predicting Biomarkers Associated with Prostate Cancer

被引:5
作者
Tong, Yanqiu [1 ,2 ]
Tan, Zhongle [3 ]
Wang, Pu [4 ]
Gao, Xi [5 ]
机构
[1] Chongqing Med Univ, Lab Forens Med & Biomed Informat, Chongqing 400016, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Tourism & Media, Chongqing 400074, Peoples R China
[3] Chongqing Three Gorges Med Coll, Sch Tradit Chinese Med, Chongqing 404120, Peoples R China
[4] Army Med Univ, Third Mil Med Univ, Southwest Hosp, Dept Rehabil, Chongqing 400038, Peoples R China
[5] Chongqing Med Univ, Univ Town Hosp, Dept Tradit Chinese Med, Chongqing 400016, Peoples R China
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2023年 / 28卷 / 12期
关键词
machine learning; prostate cancer; prognostic biomarker; prognostic model; drug targets; ANDROGEN RECEPTOR; GENE-EXPRESSION; WEB SERVER; CYCLIN-A; PROGRESSION; PROTEIN; MECHANISMS; PROGNOSIS; PLATFORM; GROWTH;
D O I
10.31083/j.fbl2812333
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Prostate cancer (PCa) is a prevalent form of malignant tumors affecting the prostate gland and is frequently diagnosed in males in Western countries. Identifying diagnostic and prognostic biomarkers is not only important for screening drug targets but also for understanding their pathways and reducing the cost of experimental verification of PCa. The objective of this study was to identify and validate promising diagnostic and prognostic biomarkers for PCa. Methods: This study implemented a machine learning technique to evaluate the diagnostic and prognostic biomarkers of PCa using protein-protein interaction (PPI) networks. In addition, multi-database validation and literature review were performed to verify the diagnostic biomarkers. To optimize the prognosis of our results, univariate Cox regression analysis was utilized to screen survival-related genes. This study employed stepwise multivariate Cox regression analysis to develop a prognostic risk model. Finally, receiver operating characteristic analysis confirmed that these predictive biomarkers demonstrated a substantial level of sensitivity and specificity when predicting the prognostic survival of patients. Results: The hub genes were UBE2C (Ubiquitin Conjugating Enzyme E2 C), CCNB1 (Cyclin B1), TOP2A (DNA Topoisomerase II Alpha), NPY (Neuropeptide Y), and TRIM36 (Tripartite Motif Containing 36). All of these hub genes were validated by multiple databases. By validation in these databases, these 10 hub genes were significantly involved in significant pathways. The risk model was constructed by a four-gene-based prognostic factor that included TOP2A, UBE2C, MYL9, and FLNA. Conclusions: The machine learning algorithm combined with PPI networks identified hub genes that can serve as diagnostic and prognostic biomarkers for PCa. This risk model will enable patients with PCa to be more accurately diagnosed and predict new drugs in clinical trials.
引用
收藏
页数:19
相关论文
共 83 条
[1]   Transcriptomics Signature from Next-Generation Sequencing Data Reveals New Transcriptomic Biomarkers Related to Prostate Cancer [J].
Alkhateeb, Abedalrhman ;
Rezaeian, Iman ;
Singireddy, Siva ;
Cavallo-Medved, Dora ;
Porter, Lisa A. ;
Rueda, Luis .
CANCER INFORMATICS, 2019, 18
[2]   Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications [J].
Alshalalfa, Mohammed ;
Nguyen, Paul L. ;
Beltran, Himisha ;
Chen, William S. ;
Davicioni, Elai ;
Zhao, Shuang G. ;
Rebbeck, Timothy R. ;
Schaeffer, Edward M. ;
Lotan, Tamara L. ;
Feng, Felix Y. ;
Mahal, Brandon A. .
EUROPEAN UROLOGY ONCOLOGY, 2019, 2 (04) :405-412
[3]   Bone health and therapeutic agents in advanced prostate cancer [J].
Antonia Gomez-Aparicio, Maria ;
Lopez-Campos, Fernando ;
Pelari-Mici, Lira ;
Buchser, David ;
Pastor, Jorge ;
Maldonado, Xavier ;
Zafra, Juan ;
Tree, Alison C. ;
Bultijnck, Renee ;
Sargos, Paul ;
Ost, Piet ;
Counago, Felipe .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (01)
[4]   Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality [J].
Aran, Veronica ;
Victorino, Ana Paula ;
Thuler, Luiz Claudio ;
Ferreira, Carlos Gil .
CLINICAL COLORECTAL CANCER, 2016, 15 (03) :195-203
[5]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol [J].
Attard, Gerhardt ;
Murphy, Laura ;
Clarke, Noel W. ;
Cross, William ;
Jones, Robert J. ;
Parker, Christopher C. ;
Gillessen, Silke ;
Cook, Adrian ;
Brawley, Chris ;
Amos, Claire L. ;
Atako, Nafisah ;
Pugh, Cheryl ;
Buckner, Michelle ;
Chowdhury, Simon ;
Malik, Zafar ;
Russell, J. Martin ;
Gilson, Clare ;
Rush, Hannah ;
Bowen, Jo ;
Lydon, Anna ;
Pedley, Ian ;
O'Sullivan, Joe M. ;
Birtle, Alison ;
Gale, Joanna ;
Srihari, Narayanan ;
Thomas, Carys ;
Tanguay, Jacob ;
Wagstaff, John ;
Das, Prantik ;
Gray, Emma ;
Alzoueb, Mymoona ;
Parikh, Omi ;
Robinson, Angus ;
Syndikus, Isabel ;
Wylie, James ;
Zarkar, Anjali ;
Thalmann, George ;
de Bono, Johann S. ;
Dearnaley, David P. ;
Mason, Malcolm D. ;
Gilbert, Duncan ;
Langley, Ruth E. ;
Millman, Robin ;
Matheson, David ;
Sydes, Matthew R. ;
Brown, Louise C. ;
Parmar, Mahesh K. B. ;
James, Nicholas D. .
LANCET, 2022, 399 (10323) :447-460
[8]   Cloning and characterisation of the RBCC728/TRIM36 zinc-binding protein from the tumor suppressor gene region at chromosome 5q22.3 [J].
Balint, I ;
Müller, A ;
Nagy, A ;
Kovacs, G .
GENE, 2004, 332 :45-50
[9]  
Bastos Diogo A, 2018, Precis Cancer Med, V1, DOI 10.21037/pcm.2018.09.01
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300