Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates

被引:1
作者
Carstensen, Carsten [1 ]
Puttkammer, Sophie [1 ]
机构
[1] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
FINITE-ELEMENT METHODS; DISCRETE RELIABILITY; EQUATIONS; AXIOMS; FEM;
D O I
10.1007/s00211-023-01382-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Guaranteed lower Dirichlet eigenvalue bounds (GLB) can be computed for the m-th Laplace operator with a recently introduced extra-stabilized nonconforming Crouzeix-Raviart (m = 1) or Morley (m = 2) finite element eigensolver. Striking numerical evidence for the superiority of a new adaptive eigensolver motivates the convergence analysis in this paper with a proof of optimal convergence rates of the GLB towards a simple eigenvalue. The proof is based on (a generalization of) known abstract arguments entitled as the axioms of adaptivity. Beyond the known a priori convergence rates, a medius analysis is enfolded in this paper for the proof of best-approximation results. This and subordinated L-2 error estimates for locally refined triangulations appear of independent interest. The analysis of optimal convergence rates of an adaptive mesh-refining algorithm is performed in 3D and highlights a new version of discrete reliability.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 52 条
  • [1] Agmon S., 2010, Lectures on Elliptic Boundary Value Problems, V369
  • [2] [Anonymous], 1992, Singularities in boundary value problems. Recherches en mathematiques appliquees
  • [3] Babuska I., 1991, HDB NUMERICAL ANAL, V2, P640
  • [4] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [5] Blum H., 1980, MATH MECH APPL SCI, V2, P556, DOI DOI 10.1002/MMA.1670020416
  • [6] OPTIMAL CONVERGENCE OF ADAPTIVE FEM FOR EIGENVALUE CLUSTERS IN MIXED FORM
    Boffi, Daniele
    Gallistl, Dietmar
    Gardini, Francesca
    Gastaldi, Lucia
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2213 - 2237
  • [7] Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
  • [8] QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD
    Bonito, Andrea
    Nochetto, Ricardo H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 734 - 771
  • [9] AXIOMS OF ADAPTIVITY WITH SEPARATE MARKING FOR DATA RESOLUTION
    Carstensen, C.
    Rabus, H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2644 - 2665
  • [10] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253